Skip to main content
Log in

Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present investigation aimed to understand the influence of two plant growth promoting cyanobacterial formulations (Anabaena-Mesorhizobium ciceri biofilm and Anabaena laxa), along with Mesorhizobium ciceri, on the symbiotic performance of five each of desi- and kabuli-chickpea cultivars. Inoculation with cyanobacterial formulations led to significant interactions with different cultivars, in terms of fresh weight and number of nodules, the concentration of nodular leghemoglobin, and the number of pods. The inoculant A. laxa alone was superior in its performance, recording 30–50% higher values than uninoculated control, and led to significantly higher nodule number per plant and fresh root weight, relative to the M. ciceri alone. Highest nodule numbers were recorded in the kabuli cultivars BG256 and BG1003. The kabuli cultivar BG1108 treated with the biofilmed Anabaena-M. ciceri inoculant recorded the highest concentration of leghemoglobin in nodules. These inoculants also stimulated the elicitation of defense- and pathogenesis-related enzymes in both the desi and kabuli cultivars, by two to threefolds. The analyses of Denaturing Gradient Gel Electrophoresis (DGGE) profiles revealed that microbial communities in nodules were highly diverse, with about 23 archaeal, 9 bacterial, and 13 cyanobacterial predominant phylotypes observed in both desi and kabuli cultivars, and influenced by the inoculants. Our findings illustrate that the performance of the chickpea plants may be significantly modulated by the microbial communities in the nodule, which may contribute towards improved plant growth and metabolic activity of nodules. This emphasizes the promise of cyanobacterial inoculants in improving the symbiotic performance of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appleby CA, Bergersen FJ (1980) Preparation and experimental use of leghaemoglobin. In: Bergersen FJ (ed) Methods for evaluating biological nitrogen. Wiley, Chichester, pp 315–335

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70:781–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin-Eagan LD, Thorpe TA (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78:438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmeyer, N (1970) Methoden der enzymatischen analyse, vol 1. Akademie Verlag, Berlin, pp 636–647

  • Bidyarani G, Prasanna R, Chawla G, Babu S, Singh R (2015) Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol 55:407–419

    Article  CAS  PubMed  Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188:97–105

    Article  PubMed  Google Scholar 

  • Brígido AAC, Laranjo M, Rodrigues S, Oliveira S (2009) Survey of chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microb Ecol 58:930–941

    Article  PubMed  Google Scholar 

  • Brígido C, Glick BR, Oliveira S (2017) Survey of plant growth-promoting mechanisms in native Portuguese chickpea Mesorhizobium Isolates. Microb Ecol 73:900–915

    Article  PubMed  Google Scholar 

  • Burjus SJ, Jawad ALM, Al-Ani NK (2014) Effect of two species of cyanobacteria as biofertilizer on characteristics and yield of chickpea plant. Iraqi J Sci 55:685–696

    Google Scholar 

  • Deka AK, Azad P (2006) Screening for efficient strains of Bradyrhizobium. Indian J Pulses Res 19:79–82

    Google Scholar 

  • Dudeja SS, Chaudhary P (2008) High and low nodulation in relation to molecular diversity of chickpea mesorhizobia in Indian soils. Arch Agron Soil Sci 54:109–120

    Article  CAS  Google Scholar 

  • Essa AMM, Ibrahim WM, Mahmud RM, Kassim NAE (2015) Potential impact of cyanobacterial exudates on seed germination and antioxidant enzymes of crop plan seedlings. Int J Curr Microbiol Appl Sci 4:1010–1024

    Google Scholar 

  • Figueredo MS, Tonelli ML, Taurian T, Angelini J, Ibañez F, Valetti L, Muñoz V, Anzuay MS, Ludueña L, Fabra A (2014) Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J Biosci 39:877–885

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Tripathi S, Gowda CLL, Ranga GV, Sharma HC, Pande S, Sharma M (2010) Chickpea seed production manual. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springer Plus. doi:10.1186/s40064-015-0811-3

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-prospects and challenges. Algal Res 2:69–97

    Article  Google Scholar 

  • Hemissi I, Mabrouk Y, Mijri S, Saidi M, Bouaziz S (2013) Enhanced defence responses of chickpea plants against Rhizoctonia solani by pre-inoculation with Rhizobia. J Phytopathol 161:412–418

    Article  CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese iron, phosphorus and polyphenols in soyabean [Glycine max (L.) Merr.] under excess zinc. Environ Exp Bot. doi:10.1016/j.envexpbot.2017.01.011

  • Israr D, Mustafa G, Khan KS, Shahzad M, Ahmad N, Masood S (2016) Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol Biochem 108:304–312

    Article  CAS  PubMed  Google Scholar 

  • Janse I, Meima M, Kardinaal WEA, Zwart G (2003) High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6634–6643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings PH, Brannaman BL, Zoheille FP (1969) Peroxidase and polyphenoloxidase activity and associated with Helminthosporium leaf spot of maize. Phytopathology 5:963–967

    Google Scholar 

  • Kantar F, Hafeez FY, Shivakumar BG, Sundaram SPN, Tejera A, Aslam A, Bano A, Raja P (2007) Chickpea: Rhizobium management and nitrogen fixation. In: Yadav SS, Redden RJ, Chen W, Sharma B (eds) Chickpea Breeding and Management. CAB International, Wallingford, pp 179–192

    Chapter  Google Scholar 

  • Karthikeyan N, Prasanna RL, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Kaushik BD (2004) Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In: Jain PC (ed) Microbiology and biotechnology for sustainable development. CBS Publishers and Distributors, New Delhi, pp 166–184

  • Kumar V, Kumar A, Verma VC, Gond SK, Kharwar RN (2007) Induction of defense enzymes in Pseudomonas fluorescens treated chickpea roots against Macrophomina phaseolina. Indian Phytopathol 60:289–295

    CAS  Google Scholar 

  • Laranjo M, Young JPW, Oliveira S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 35:359–367

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:329–342

    Google Scholar 

  • Mandal BPL, Vlek PLG, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 28:329–342

    Article  CAS  Google Scholar 

  • Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera-Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57:873–887

    Article  CAS  Google Scholar 

  • Martinez-Hidalgo P, Flores-Feliz JD, Menendez E, Rivas R, Carro L, Mateos PF, Martinez-Molina E, Leon-Barrios M, Velazquez E (2015) Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from Symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol 38:346–350

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of BGA-Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation at different depths in soil cores. Biol Fertil Soils 40:7–72

    Article  Google Scholar 

  • Pii Y, Marastoni L, Springeth C, Fontanella MC, Beone GM, Cesco S, Mimmo T (2016) Modulation of Fe acquisition process by Azospirillum brasilense in cucumber plants. Environ Exp Bot 130:216–225

    Article  CAS  Google Scholar 

  • Prasad R, Shivay YS, Kumar D, Sharma SN (2006) Learning by doing exercises in soil fertility. Division of Agronomy, Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009a) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Nain L, Ancha R, Jadhav S, Joshi M, Kaushik BD (2009b) Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egypt J Biol 11:26–36

    Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2012) Influence of co-inoculation of bacteria cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J Microbiol Biotechnol 28:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, Shivay YS (2013a) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Article  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G, Choudhary V, Singh S, Gupta V, Nain L, Sexana AK (2013b) Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biol Agric Hortic 29:145–158

    Article  Google Scholar 

  • Prasanna R, Hossain F, Babu S, Bidyarani N, Adak A, Verma S, Shivay SY, Nain L (2015) Prospecting cyanobacterial formulations as growth-promoting agents for maize hybrids. S Afr J Plant Soil 32:199–207

    Article  Google Scholar 

  • Racchi ML (2013) Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2:340–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Rajendran G, Patel MH, Joshi SJ (2012) Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of Fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol. doi:10.1155/2012/693982

  • Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro and micronutrients in grains in rice-wheat cropping sequence. Cogent Food Agric. doi:10.1080/23311932.2015.1037379

    Google Scholar 

  • Rouhrazi K, Khodakaramian G (2015) Phenotypic and genotypic diversity of root-nodulating bacteria isolated from chickpea (Cicer arietinum L.) in Iran. Ann Microbiol 65:2219–2227

    Article  CAS  Google Scholar 

  • Saini VK, Bhandarib SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C. N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops Field Crops Res 89:39–47

    Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81

    Article  CAS  PubMed  Google Scholar 

  • Sarr PS, Khouma M, Sene M, Guisse A, Badiane AN, Yamakawa T (2008) Effect of Pearl millet-cowpea cropping systems on nitrogen recovery, nitrogen use efficiency and biological fixation using 15N tracer technique. Soil Sci Plant Nutr 54:142–147

    Article  CAS  Google Scholar 

  • Sharma S, Gaur RK, Choudhary DK (2012) Phenetic and Functional Characterization of Endophytic Root-nodule Bacteria Isolated from Chickpea (Cicer arietinum L.) and Mothbean (Vigna aconitifolia L.) of Arid-and Semi-arid Regions of Rajasthan, India. Pak J Biol Sci 15:889–894

    Article  PubMed  Google Scholar 

  • Sheoran A, Khurana AL, Dudeja SS (1997) Nodulation competitiveness in the Rhizobium-chickpea nodulation variants symbiosis. Microbiol Res 152:407–412

    Article  CAS  Google Scholar 

  • Singh G, Sekhon HS, Sharma P (2011) Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.). Arch Agron Soil Sci 57:715–726

    Article  Google Scholar 

  • Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Tagore GS, Namdeo SL, Sharma SK, Kumar N (2013) Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. Int J Agron. doi:10.1155/2013/581627

    Google Scholar 

  • Venkataraman GS (1981) Cyanobacteria for rice production. FAO Soils Bulletin No. 46, Rome

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Younis ME, Hasaneen MNA, Tourky SMN (2009) Plant growth, metabolism and adaptation in relation to stress conditions. XXIV. Salinity biofertility interactive effects on proline, glycine and various antioxidants in Lactuca sativa. Plant Omics 2:197–205

    CAS  Google Scholar 

  • Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu SA (2015) Legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11:e1005280

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Yua T, Loub K, Maoc PH, Wanga ET, Chena WF, Chen WX (2014) Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol 37:520–524

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation received support partially from the Indian Council of Agricultural Research (ICAR) funded Network Project on Microorganisms “Application of Microorganisms in Agricultural and Allied Sectors” (AMAAS), New Delhi to RP and SERB Project, funded by DST, Government of India to BR. The authors are also thankful to the Division of Microbiology, ICAR-IARI, New Delhi for access to the facilities to undertake this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest.

Additional information

Communicated by Djamel DRIDER.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, R., Ramakrishnan, B., Simranjit, K. et al. Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch Microbiol 199, 1311–1323 (2017). https://doi.org/10.1007/s00203-017-1405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1405-y

Keywords

Navigation