Skip to main content

Advertisement

Log in

Exploring Crop–Microbiome Interactions Towards Improving Symbiotic Performance of Chickpea (Cicer arietinum) Cultivars Using Cyanobacterial Inoculants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The significance of integrated nutrient management practices is well established in improving the productivity of chickpea (Cicer arietinum); however, the effects of the inoculation of cyanobacterial inoculants on nodule metabolism, microbiome and associated genes are less explored. In the present investigation, cyanobacterium Anabaena laxa (A. laxa) and biofilm developed using Anabaena torulosa, with Mesorhizobium ciceri as a partner (An-M. ciceri), were evaluated along with Mesorhizobium ciceri (M. ciceri) alone, in three chickpea cultivars. Microbial inoculation led to 40–70% enhancement in nitrogen fixation, leghaemoglobin and ureide content, and two- to threefold increment in nitrate reductase and phosphoenolpyruvate carboxylase activity of the nodules. An enhancement of 30–50% in the soil available macro- and micronutrients and plant growth attributes was also observed. A significant correlation between the soil microbiological and plant parameters was recorded, particularly in relation to the nitrogen dynamics. Increases in the leghaemoglobin content in nodules due to An-M. ciceri, A. laxa and M. ciceri ranged from 18 to 40%, particularly in chickpea cv. BG372 in which 60–80% enhancement was recorded. Whereas the nifH gene copies in the nodule tissues ranged from 5.00 × 106 to 3.35 × 107 g−1, the application of A. laxa led to higher abundances of nifH gene copies in desi chickpea cv. BG372 and kabuli BG1053 cultivars. An-M. ciceri, followed closely by A. laxa, was the top-ranking treatment, and chickpea cv. BG372 was the best performing cultivar; An-M. ciceri—chickpea cv. BG372 proved to be the superior combination for higher plant growth and soil nutrient-related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39:1216–1232

    Article  CAS  Google Scholar 

  • Appleby CA, Bergersen FJ (1980) In: Bergersen FJ (ed) Methods for evaluating biological nitrogen fixation. Wiley, New York

    Google Scholar 

  • Arefian M, Vessal S, Shafaroudi SM, Bagheri A (2017) Comparative analysis of the reaction to salinity of different chickpea (Cicer aretinum L.) genotypes: a biochemical, enzymatic and transcriptional study. J Plant Growth Regul. https://doi.org/10.1007/s00344-017-9737-z

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrese-Igor C, Garcia-Plazaola JI, Hernandez A, Aparicio-Tejo PM (1990) Effect of low nitrate supply to nodulated lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism. Physiol Plant 80:185–190

    Article  CAS  Google Scholar 

  • Babu S, Bidyarani N, Chopra P, Monga D, Kumar R, Prasanna R, Kranthi S, Adak A, Saxena AK (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot challenged cotton crop. Eur J Plant Pathol 142:345–362

    Article  CAS  Google Scholar 

  • Baral B, da Silva JAT, Gupta VN (2014) Xylem-mediated channeling of nitrogen in broad bean (Vicia faba). Environ Exp Biol 12:187–197

    Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15:261–282

    CAS  Google Scholar 

  • Barnett JP, Millard A, Ksibe AZ, Scanlan DJ, Schmid R, Blindaue CA (2012) Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front Microbiol 3:142–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Berkum PV, Sloger C, Weber DF, Cregan PB, Keyser HH (1985) Relationship between ureide N and N2 Fixation, above ground N accumulation, acetylene reduction, and nodule mass in greenhouse and field studies with Glycine max L. (Merr). Plant Physiol 77:53–58

    Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188:97–105

    Article  CAS  PubMed  Google Scholar 

  • Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chamber-Pérez MA, Camacho-Martínez M, Soriano-Niebla JJ (1997) Nitrate reductase activities of Bradyrhizobium spp. in tropical legumes: effects of nitrate on O2 diffusion in nodules and carbon costs of N2 fixation. J Plant Physiol 150:92–96

    Article  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22:163–174

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Kahn ML, Leustek T, Long SR (2000) Nitrogen and sulfur. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants, American Society of Plant Physiologists, Rockville, MD, pp. 786–849

    Google Scholar 

  • Das K, Rajawat MVS, Saxena AK, Prasanna R (2017) Development of Mesorhizobium ciceri -based biofilms and analyses of their antifungal and plant growth promoting activity in chickpea challenged by Fusarium wilt. Indian J Microbiol 57(1):48–59. https://doi.org/10.1007/s12088-016-0610-8

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bruijn FJ (2015) Biological nitrogen fixation. In: Lugtenberg B (ed) Principles of plant-microbe, Springer, Heidelberg, pp. 215-224

    Google Scholar 

  • De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide producing cyanobacteria and their possible exploitation: a review. J Appl Phycol 13:293–299

    Article  Google Scholar 

  • Deroche M-E, Carrayol E (1988) Nodule phosphoenolpyruvate carboxylase: a review. Physiol Plantar 74(13):775–782. https://doi.org/10.1111/j.1399-3054.1988.tb02051.x

    Article  CAS  Google Scholar 

  • Dey SK, Chakrabarti B, Prasanna R, Pratap D, Singh SD, Purakayastha TJ, Pathak H (2017) Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Arch Agron Soil Sci, 63(13):1927–1937 doi: https://doi.org/10.1080/03650340.2017.1315105

    Article  CAS  Google Scholar 

  • Elkoca E, Kocli T, Gunes A, Turan M (2015) The symbiotic performance and plant nutrient uptake of certain nationally registered chickpea (Cicer arietinum L.) cultivars of Turkey. J Plant Nutr 38:1427–1443. https://doi.org/10.1080/01904167.2014.983123

    Article  CAS  Google Scholar 

  • Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-S (2014) Approaches for enhancement of N2 fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. Plant Biotechnol J 12:387–397

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2014) Agriculture. Available from http://faostat.fao.org

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemetakis E, Dimou M, Cotzur D, Aivalakis G, Efrose RC, Kenoutis C, Udvardi M, Katinakis PA (2003) Lotus japonicus β-type carbonic anhydrase gene expression pattern suggests distinct physiological roles during nodule development. Biochim Biophys Acta 1628:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gan YT, Warkentin TD, McDonald CL, Zentner RP, Vandenberg A (2009) Seed yield and yield stability of chickpea in response to cropping systems and soil fertility in northern latitudes. Agron J 101:1113–1122

    Article  Google Scholar 

  • Garg N, Singla R (2004) Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Braz J Plant Physiol 16:137–146

    Article  Google Scholar 

  • Gaur YD, Sen AN (1981) Cultural and biochemical characteristics of root nodule bacteria of chickpea (Cicer arietinum L.). Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft, der Technologie und des Umweltschuzes 136:307–316

    Article  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney R (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springer Plus 4:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria). J Appl Phycol 23:73–81

    Article  CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae) – prospects and challenges. Algal Res 2:69–97

    Article  Google Scholar 

  • Haque M, Hamid A, Bhuiyan NI (2001) Nutrient uptake and productivity as affected by nitrogen and potassium application levels N maize/sweet potato intercropping system. Korean J Crop Sci 46:1–5

    Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Application of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol Biochem 5:47–81. https://doi.org/10.1016/0038-0717(73)90093-X

    Article  CAS  Google Scholar 

  • Hegazi AZ, Mostafa MSS, Ahmed HMI (2010) Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization. Nat Sci 8:183–194

    Google Scholar 

  • Herridge DF, Bergersen FJ, Peoples MB (1990) Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiol 98:708–716

    Article  Google Scholar 

  • Hesse PR (1971) A textbook of soil chemical analysis. John Murray, London

    Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2013) Culture-independent molecular approaches to microbial ecology in soil and the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. Wiley Blackwell, Hoboken, pp. 45–55

    Chapter  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Israr D, Mustafa G, Khan KS, Shahzad M, Ahmad N, Masood S (2016) Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol Biochem 108:304–312

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifour F-P (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Article  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Kaur S, Khanna V (2014) Effect of temperature-tolerant rhizobial isolates as PGPR on nodulation, growth and yield of pigeonpea [Cajanus cajan (L) Milsp.]. J Food Legumes 26:80–83

    Google Scholar 

  • Kumar M, Prasanna R, Bidyarani N, Babu S, Mishra BK, Kumar A, Adak A, Jauhari S, Yadav K, Singh R, Saxena AK (2013) Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Sci Hortic 164:94–101

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am 42:421–428

    Article  CAS  Google Scholar 

  • Lowe RH, Evans HJ (1964) Preparation and some properties of a soluble nitrate reductase from Rhizobium japonicum. ‎Biochim Biophys Acta 85:377–389

    CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll. J Biol Chem 140:315–323

    CAS  Google Scholar 

  • Nunan N, Morgan MA, Herlihy M (1998) Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biol Biochem 30:599–1603

    Article  Google Scholar 

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov. Print. Office, Washington, D.C.

  • Olsson MO, Falkengren-Grerup U (2000) Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak woodland understory. Ann Bot 85:299–305

    Article  CAS  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth promoting rhizobacteria. J Plant Growth Regul 31:53–62

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and sub-tropical agriculture. Adv Agron 44:155–223

    Article  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Shivay YS, Kumar D, Sharma SN (2006) Learning by doing exercises in soil fertility. Division of Agronomy, Indian Agricultural Research Institute, New Delhi

  • Prasanna R, Pattnayak S, Sugitha TCK, Nain L, Saxena AK (2011) Development of cyanobacterium based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiol 56:49–58

    Article  CAS  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G et al (2013) Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biol Agric Hortic 29:145–158

    Article  Google Scholar 

  • Prasanna R, Sood A, Ratha SK, Singh PK (2014a) Cyanobacteria as a “green option” for sustainable agriculture. In: Sharma NK, Stal LJ, Rai AK (eds) Cyanobacteria: an economic perspective, Wiley, Chichester, pp 145–166

    Google Scholar 

  • Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014b) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366

    Article  Google Scholar 

  • Prasanna R, Ramakrishnan B, Simranjit K, Ranjan K, Kanchan A, Hossain F, Nain L (2017) Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch Microbiol 199(9):1311–1323. https://doi.org/10.1007/s00203-017-1405-y

    Article  CAS  PubMed  Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Kaur S, Prasanna R, Ranjan K, Kanchan A, Hossain F, Shivay Y, Nain L (2017) Microbial inoculation of seeds characteristically shapes the rhizosphere microbiome in desi and kabuli chickpea types. J Soils Sediments. https://doi.org/10.1007/s11368-017-1685-5

    Article  Google Scholar 

  • Ranjan K, Priya H, Ramakrishnan B, Prasanna R, Venkatachalam S, Thapa S, Tiwari R, Nain L, Singh R, Shivay YS (2016) Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl Soil Ecol 108:195–203

    Article  Google Scholar 

  • Renuka N, Prasanna R, Sood A, Bansal R, Singh R, Shivay YS, Nain L, Ahluwalia AS (2017) Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat. Rhizosphere 3:150–159

    Article  Google Scholar 

  • Rupela OP, Saxena MC (1987) Nodulation and nitrogen fixation in chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 191–206

    Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55:74–81

    Article  CAS  PubMed  Google Scholar 

  • Salazar S, Sánchez LE, Alvarez J, Valverde A, Galindo P, Igual JM, Peix A, Santa-Regina I (2011) Correlation among soil enzyme activities under different forest system management practices. Ecol Eng 37:1123–1131

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00529

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2018) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37:174–182

    Article  CAS  Google Scholar 

  • Soussi M, Lluch C, Ocana A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708

    Article  CAS  Google Scholar 

  • Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Shekhar NC, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tomaszewska B, Marczewski W, Schramm RW (1983) Phosphoenolpyruvate carboxylase in the roots of yellow lupin (Lupinus luteus). Acta Biochim Polon 30:265–275

    CAS  PubMed  Google Scholar 

  • Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77

    Article  CAS  Google Scholar 

  • Zhang N, He XD, Gao YB, Li YH, Wang HT, Ma D, Zhang R, Yang S (2010) Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 20:229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present investigation was partially funded by the Network Project on Microorganisms “Application of Microorganisms in Agricultural and Allied Sectors” (AMAAS), granted by the Indian Council of Agricultural Research (ICAR), New Delhi to RP. We are grateful to the Division of Agronomy, ICAR-IARI, New Delhi for providing necessary facilities for the analyses of soil samples and Division of Genetics, ICAR-IARI, for the chickpea germplasm. The authors are also thankful to Dr. Firoz Hossain, Maize Genetics Unit, Division of Genetics, ICAR-IARI for help with the statistical analyses. We acknowledge the Division of Microbiology, ICAR-IARI, New Delhi for providing the necessary facilities to undertake this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 107 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simranjit, K., Ranjan, K., Prasanna, R. et al. Exploring Crop–Microbiome Interactions Towards Improving Symbiotic Performance of Chickpea (Cicer arietinum) Cultivars Using Cyanobacterial Inoculants. J Plant Growth Regul 38, 55–69 (2019). https://doi.org/10.1007/s00344-018-9809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9809-8

Keywords

Navigation