Skip to main content
Log in

A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s−1) and FAD (4.4 µM, 56 s−1). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Barrio JR, Tolman GL, Leonard NJ, Spencer RD, Weber G (1973) Flavin 1, N6-ethenoadenine dinucleotide: dynamic and static quenching of fluorescence. Proc Nat Acad Sci. 70:941–943. doi:10.1073/pnas.70.3.941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chaiyen P, Suadee C, Wilairat P (2001) A novel two-protein component flavoprotein hydroxylase. Eur J Biochem 268:5550–5561. doi:10.1046/j.1432-1033.2001.02490.x

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ortiz-Maldonado M, Entsch B, Ballou DP (2010) Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase. Biochemistry 49:372–385. doi:10.1021/bi901454u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Covès J, Nivière V, Eschenbrenner M, Fontecave M (1993) NADPH-sulfite reductase from Escherichia coli. A flavin reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem 268:18604–18609. doi:10.1128/JB.01050-07

    PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferreira MI, Iida T, Hasan SA, Nakamura K, Fraaije MW, Janssen DB, Kudo T (2009) Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Environ Microbiol 75:7767–7773. doi:10.1128/AEM.00171-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fromm HJ (1979) Summary of kinetic reaction mechanisms. Methods Enzymol 63:42–53

    Article  CAS  PubMed  Google Scholar 

  • Galan B, Díaz E, Prieto MA, García JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily. J Bacteriol 182:627–636. doi:10.1128/JB.182.3.627-636.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibello A, Suarez M, Allende JL, Martin M (1997) Molecular cloning and analysis of the genes encoding the 4-hydroxyphenylacetate hydroxylase from Klebsiella pneumoniae. Arch Microbiol 167:160–166. doi:10.1007/s002030050429

    Article  CAS  Google Scholar 

  • Gisi MR, Xun L (2003) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Bacteriol 185:2786–2792. doi:10.1128/JB.185.9.2786-2792.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Hartmans S, van der Werf MJ, de Bont JA (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollmann F, Lin P-C, Witholt B, Schmid A (2003) Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J Am Chem Soc 125:8209–8217. doi:10.1021/ja034119u

    Article  CAS  PubMed  Google Scholar 

  • Kantz A, Gassner GT (2011) Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase. Biochemistry 50:523–532. doi:10.1021/bi101328r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kantz A, Chin F, Nallamothu N, Nguyen T, Gassner GT (2005) Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch Biochem Biophys 442:102–116. doi:10.1016/j.abb.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  • Kirchner U, Westphal AH, Müller R, van Berkel WJH (2003) Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J Biol Chem 278:47545–47553. doi:10.1074/jbc.M307397200

    Article  CAS  PubMed  Google Scholar 

  • Lee J-K, Zhao H (2007) Identification and characterization of the flavin:NADH reductase (PrnF) involved in a novel two-component arylamine oxygenase. J Bacteriol 189:8556–8563. doi:10.1128/JB.01050-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lei B, Tu S-C (1998) Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry 37:14623–14629. doi:10.1021/bi981841+

    Article  CAS  PubMed  Google Scholar 

  • Lei B, Liu M, Huang S, Tu S-C (1994) Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bacteriol 176:3552–3558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin H, Qiao J, Liu Y, Wu Z-L (2010) Styrene monooxygenase from Pseudomonas sp. LQ26 catalyzes the asymmetric epoxidation of both conjugated and unconjugated alkenes. J Mol Catal B Enzym 67:236–241. doi:10.1016/j.molcatb.2010.08.012

    Article  CAS  Google Scholar 

  • Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269:22459–22462

    CAS  PubMed  Google Scholar 

  • Metzgar D, Bacher JM, Pezo V, Reader J, Döring V, Schimmel P, Marlière P, De Crécy-Lagard V (2004) Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32:5780–5790. doi:10.1093/nar/gkh881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montersino S, Tischler D, Gassner GT, van Berkel WJH (2011) Catalytic and structural features of flavoprotein hydroxylases and epoxidases. Adv Synth Catal 353:2301–2319. doi:10.1002/adsc.201100384

    Article  CAS  Google Scholar 

  • Morrison E, Kantz A, Gassner GT, Sazinsky MH (2013) Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction. Biochemistry 52:6063–6075. doi:10.1021/bi400763h

    Article  CAS  PubMed  Google Scholar 

  • O’Leary ND, O’Connor KE, Duetz W, Dobson ADW (2001) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979

    PubMed  Google Scholar 

  • Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302. doi:10.1128/JB.186.16.5292-5302.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parry RJ, Li W (1997) An NADPH:FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning, analysis, and overexpression. J Biol Chem 272:23303–23311. doi:10.1074/jbc.272.37.23303

    Article  CAS  PubMed  Google Scholar 

  • Prieto MA, Garcia JL (1994) Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem 269:22823–22829

    CAS  PubMed  Google Scholar 

  • Riedel A, Mehnert M, Heine T, Rathsack P, Kaschabek SR, Schlömann M, Tischler D (2013) GDCh - Wissenschaftsforum Chemie 2013, BIO 011. Darmstadt

  • Rudolph FB (1979) Product inhibition and abortive complex formation. Methods Enzymol 63:411–436

    Article  CAS  PubMed  Google Scholar 

  • Russell TR, Tu S-C (2004) Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization. Biochemistry 43:12887–12893. doi:10.1021/bi048499n

    Article  CAS  PubMed  Google Scholar 

  • Russell TR, Demeler B, Tu S-C (2004) Kinetic mechanism and quaternary structure of Aminobacter aminovorans NADH:flavin oxidoreductase: an unusual flavin reductase with bound flavin. Biochemistry 43:1580–1590. doi:10.1021/bi035578a

    Article  CAS  PubMed  Google Scholar 

  • Saa L, Jaureguibeitia A, Largo E, Llama MJ, Serra JL (2010) Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 86:201–211. doi:10.1007/s00253-009-2251-x

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S (2008) Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 190:7367–7374. doi:10.1128/JB.00742-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel M, Kaschabek S, Gröning J, Mau M, Schlömann M (2005) Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183:80–94. doi:10.1007/s00203-004-0748-3

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thotsaporn K, Sucharitakul J, Wongratana J, Suadee C, Chaiyen P (2004) Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochim Biophys Acta 1680:60–66. doi:10.1016/j.bbaexp.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  • Tischler D, Kaschabek SR (2012) Microbial degradation of xenobiotics. In: Singh SN (ed) Environmental science and engineering. Springer, Heidelberg, pp 67–99

    Google Scholar 

  • Tischler D, Eulberg D, Lakner S, Kaschabek SR, van Berkel WJH, Schlömann M (2009) Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009. doi:10.1128/JB.00307-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tischler D, Kermer R, Gröning JAD, Kaschabek SR, van Berkel WJH, Schlömann M (2010) StyA1 and StyA2B from Rhodococcus opacus 1CP: a multifunctional styrene monooxygenase system. J Bacteriol 192:5220–5227. doi:10.1128/JB.00723-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tischler D, Gröning JAD, Kaschabek SR, Schlömann M (2012) One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl Biochem Biotechnol 167:931–944. doi:10.1007/s12010-012-9659-y

    Article  CAS  PubMed  Google Scholar 

  • Tiwari MK, Singh RK, Lee J-K, Zhao H (2012) Mechanistic studies on the flavin:NADH reductase (PrnF) from Pseudomonas fluorescens involved in arylamine oxygenation. Bioorg Med Chem Lett 22:1344–1347. doi:10.1016/j.bmcl.2011.12.078

    Article  CAS  PubMed  Google Scholar 

  • Toda H, Itoh N (2012) Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10. J Biosci Bioeng 113:12–19. doi:10.1016/j.jbiosc.2011.08.028

    Article  CAS  PubMed  Google Scholar 

  • Tu S-C (2001) Reduced flavin: donor and acceptor enzymes and mechanisms of channeling. Antioxid Redox Sign 3:881–897. doi:10.1089/15230860152665046

    Article  CAS  Google Scholar 

  • Ukaegbu UE, Kantz A, Beaton M, Gassner GT, Rosenzweig AC (2010) Structure and ligand binding properties of the epoxidase component of styrene monooxygenase. Biochemistry 49:1678–1688. doi:10.1021/bi901693u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689. doi:10.1016/j.jbiotec.2006.03.044

    Article  PubMed  Google Scholar 

  • van den Heuvel RHH, Westphal AH, Heck AJR, Walsh MA, Rovida S, van Berkel WJH, Mattevi A (2004) Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action. J Biol Chem 279:12860–12867. doi:10.1074/jbc.M313765200

    Article  PubMed  Google Scholar 

  • van Hellemond EW, van Dijk M, Heuts DPHM, Janssen DB, Fraaije MW (2008) Discovery and characterization of a putrescine oxidase from Rhodococcus erythropolis NCIMB 11540. Appl Microbiol Biotechnol 78:455–463. doi:10.1007/s00253-007-1310-4

    Article  PubMed Central  PubMed  Google Scholar 

  • van Lanen SG, Lin S, Horsman GP, Shen B (2009) Characterization of SgcE6, the flavin reductase component supporting FAD-dependent halogenation and hydroxylation in the biosynthesis of the enediyne antitumor antibiotic C-1027. FEMS Microbiol Lett 300:237–241. doi:10.1111/j.1574-6968.2009.01802.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Velasco A, Alonso S, García JL, Perera J, Díaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The project was financed by the Saxon Ministry for Environment, Agriculture, and Geology (LfULG-1771508003). Dirk Tischler was supported by the European Social Fund and the Saxon Government (GETGEOWEB: 100101363). We are grateful to Adrie Westphal for advice during fluorescence measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Tischler.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröning, J.A.D., Kaschabek, S.R., Schlömann, M. et al. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1. Arch Microbiol 196, 829–845 (2014). https://doi.org/10.1007/s00203-014-1022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1022-y

Keywords

Navigation