Skip to main content

Advertisement

Log in

Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by α-Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3401

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Bahar M, de Majnik J, Wexler M, Fry J, Poole PS, Murphy PJ (1998) A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol Plant Microbe Interact 11:1057–1068

    CAS  PubMed  Google Scholar 

  • Bhat MA, Tsuda M, Horiike K, Nozaki M, Vaidyanathan CS, Nakazawa T (1994) Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 60:307–312

    CAS  PubMed  Google Scholar 

  • Boyle JS, Lew AM (1995) An inexpensive alternative to glassmilk for DNA purification. Trends Genet 11:8

    CAS  PubMed  Google Scholar 

  • Cavalca L, Hartmann A, Rouard N, Soulas G (1999) Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria. FEMS Microbiol Ecol 29:45–58

    CAS  Google Scholar 

  • Chang H-K, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    CAS  PubMed  Google Scholar 

  • Chang H-K, Mohseni P, Zylstra GJ (2003) Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 185:5871–5881

    CAS  PubMed  Google Scholar 

  • Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V (2000) Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J Bacteriol 182:4744–4751

    CAS  PubMed  Google Scholar 

  • Chugani SA, Parsek MR, Chakrabarty AM (1998) Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites. J Bacteriol 180:2367–2372

    CAS  PubMed  Google Scholar 

  • Clément P, Pieper DH, González B (2001) Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148

    PubMed  Google Scholar 

  • Collier LS, Gaines GL III, Neidle EL (1998) Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180:2493–2501

    CAS  PubMed  Google Scholar 

  • Deghmane A-E, Petit S, Topilko A, Pereira Y, Giorgini D, Larribe M, Taha M-K (2000) Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO J 19:1068–1078

    CAS  PubMed  Google Scholar 

  • Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann K-H, Holliger C, van der Meer JR, Lal R (2004) Organization of lin genes and IS 6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol 186:2225–2235

    CAS  PubMed  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90

    CAS  PubMed  Google Scholar 

  • Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    CAS  PubMed  Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    PubMed  Google Scholar 

  • Eulberg D, Kourbatova EM, Golovleva LA, Schlömann M (1998) Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. J Bacteriol 180:1082–1094

    CAS  PubMed  Google Scholar 

  • Fritsche K (1998) Molekularbiologische Untersuchungen zum Chlorphenolabbau durch Stamm S1, ein Proteobakterium der α-2-Untergruppe. Dissertation, Martin-Luther-Universität Halle-Wittenberg

  • Fulthorpe RR, McGowan C, Maltseva OV, Holben WE, Tiedje JM (1995) 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol 61:3274–3281

    CAS  PubMed  Google Scholar 

  • Ghisalba O (1983) Chemical wastes and their biodegradation—an overview. Experientia 39:1247–1257

    CAS  PubMed  Google Scholar 

  • Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc Natl Acad Sci USA 82:1638–1642

    CAS  PubMed  Google Scholar 

  • Gorlatov SN, Maltseva OV, Shevchenko VI, Golovleva LA (1989) Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Mikrobiologiya 58:802–806

    CAS  Google Scholar 

  • Hickey WJ, Sabat G, Yuroff AS, Arment AR, Perez-Lesher J (2001) Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol 67:4603–4609

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann D, Kleinsteuber S, Müller RH, Babel W (2003) A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkali tolerant strain Delftia acidovorans P4a. Microbiology 149:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA, Buckley DH, Nakatsu CH, Schmidt TM, Hausinger RP (1997) Distribution of the tfdA gene in soil bacteria that do not degrade 2,4-dichlorophenoxyacetic acid (2,4-D). Microb Ecol 34:90–96

    Article  CAS  PubMed  Google Scholar 

  • Holben WE, Schroeter BM, Calabrese VGM, Olsen RH, Kukor JK, Biederbeck VO, Smith AE, Tiedje JM (1992) Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 58:3941–3948

    PubMed  Google Scholar 

  • Houghton JE, Brown TM, Appel AJ, Hughes EJ, Ornston LN (1995) Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol 177:401–412

    CAS  PubMed  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    CAS  PubMed  Google Scholar 

  • Itoh K, Kanda R, Sumita Y, Kim H, Kamagata Y, Suyama K, Yamamoto H, Hausinger RP, Tiedje JM (2002) tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Appl Environ Microbiol 68:3449–3454

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H (2004) Root nodule Bradyrhizobium spp. harbor tfdAα and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol 70:2110–2118

    CAS  PubMed  Google Scholar 

  • Ka JO, Holben WE, Tiedje JM (1994a) Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol 60:1106–1115

    CAS  PubMed  Google Scholar 

  • Ka JO, Holben WE, Tiedje JM (1994b) Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil. Appl Environ Microbiol 60:1116–1120

    CAS  PubMed  Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272

    CAS  PubMed  Google Scholar 

  • Kaschabek SR, Reineke W (1994) Synthesis of bacterial metabolites from haloaromatic degradation. 1. Fe(III)-catalyzed peracetic acid oxidation of halocatechols, a acile entry to cis,cis-2-halo-2,4-hexadienedioic acids and 3-halo-5-oxo-2(5H)-furanylideneacetic acids. J Org Chem 59:4001–4003

    CAS  Google Scholar 

  • Kato K, Ohtsuki K, Mitsuda H, Yomo T, Negoro S, Urabe I (1994) Insertion sequence IS 6100 on plasmid pOAD2, which degrades nylon oligomers. J Bacteriol 176:1197–1200

    CAS  PubMed  Google Scholar 

  • Kaulmann U, Kaschabek SR, Schlömann M (2001) Mechanism of chloride elimination from 3-chloro and 2,4-dichloro-cis,cis-muconate: new insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. J Bacteriol 183:4551–4561

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Leem S-H, Choi J-S, Chung YH, Kim S, Park Y-M, Park YK, Lee YN, Ha K-S (1997) Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J Bacteriol 179:5226–5231

    CAS  PubMed  Google Scholar 

  • Kitagawa W, Takami S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM, Fukuda M (2002) Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184:509–518

    Article  CAS  PubMed  Google Scholar 

  • Kleinsteuber S, Hoffmann D, Müller RH, Babel W (1998) Detection of chlorocatechol 1,2-dioxygenase genes in proteobacteria by PCR and gene probes. Acta Biotechnol 18:231–240

    CAS  Google Scholar 

  • Klemba M, Jakobs B, Wittich R-M, Pieper D (2000) Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66:3255–3261

    CAS  PubMed  Google Scholar 

  • Koiv V, Marits R, Heinaru A (1996) Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. Gene 174:293–297

    CAS  PubMed  Google Scholar 

  • Kuhm AE, Schlömann M, Knackmuss H-J, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J 266:877–883

    CAS  PubMed  Google Scholar 

  • Laemmli CM, Leveau JHJ, Zehnder AJB, van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol 182:4165–4172

    CAS  PubMed  Google Scholar 

  • Laemmli CM, Schönenberger R, Suter M, Zehnder AJB, van der Meer JR (2002) TfdDII, one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro-cis,cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Arch Microbiol 178:13–25

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Leander M, Vallaeys T, Fulthorpe R (1998) Amplification of putative chlorocatechol dioxygenase gene fragments from α- and β-Proteobacteria. Can J Microbiol 44:482–486

    CAS  PubMed  Google Scholar 

  • Leveau JHJ, Zehnder AJB, van der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180:2237–2243

    CAS  PubMed  Google Scholar 

  • Liu S, Ogawa N, Miyashita K (2001) The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene 268:207–214

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  Google Scholar 

  • Maltseva OV, Solyanikova IP, Golovleva LA (1994a) Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from Gram-negative strains. Eur J Biochem 226:1053–1061

    CAS  PubMed  Google Scholar 

  • Maltseva OV, Solyanikova IP, Golovleva LA, Schlömann M, Knackmuss H-J (1994b) Dienelactone hydrolase from Rhodococcus erythropolis 1CP: purification and properties. Arch Microbiol 162:368–374

    CAS  Google Scholar 

  • Martin C, Timm J, Rauzier J, Gomez-Lus R, Davies J, Gicquel B (1990) Transposition of an antibiotic resistance element in mycobacteria. Nature 345:739–743

    CAS  PubMed  Google Scholar 

  • McGowan C, Fulthorpe R, Wright A, Tiedje JM (1998) Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol 64:4089–4092

    CAS  PubMed  Google Scholar 

  • McFall SM, Parsek MR, Chakrabarty AM (1997) 2-Chloromuconate and ClcR-mediated activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses. J Bacteriol 179:3655–3663

    CAS  PubMed  Google Scholar 

  • McFall SM, Chugani SA, Chakrabarty AM (1998) Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 223:257–267

    CAS  PubMed  Google Scholar 

  • van der Meer JR, Eggen RIL, Zehnder AJB, de Vos WM (1991) Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-deoxygenase for chlorinated substrates. J Bacteriol 173:2425–2434

    PubMed  Google Scholar 

  • Moiseeva OV, Belova OV, Solyanikova IP, Schlömann M, Golovleva LA (2001) Enzymes of a new modified ortho-pathway utilizing 2-chlorophenol in Rhodococcus opacus 1CP. Biochemistry (Mosc) 66:548–555

    CAS  Google Scholar 

  • Moiseeva OV, Solyanikova IP, Kaschabek SR, Gröning J, Thiel M, Golovleva LA, Schlömann M (2002) A new modified ortho-cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidences. J Bacteriol 184:5282–5292

    Article  CAS  PubMed  Google Scholar 

  • Müller TA, Byrde SM, Werlen C, van der Meer JR, Kohler H-PE (2004) Genetic analysis of phenoxyalkanoic acid degradation in Sphingomonas herbicidovorans MH. Appl Environ Microbiol 70:6066–6075

    PubMed  Google Scholar 

  • Murakami S, Takashima A, Takemoto J, Takenaka S, Shinke R, Aoki K (1999) Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Gene 226:189–198

    CAS  PubMed  Google Scholar 

  • Neidle EL, Hartnett C, Bonitz S, Ornston LN (1988) DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA sequence repetitions. J Bacteriol 170:4874–4880

    CAS  PubMed  Google Scholar 

  • Nomura Y, Nakagawa M, Ogawa N, Harashina S, Oshima Y (1992) Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferment Bioeng 74:333–334

    CAS  Google Scholar 

  • Ogawa N, Miyashita K (1999) The chlorocatechol-catabolic transposon Tn 5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65:724–731

    CAS  PubMed  Google Scholar 

  • Ogawa N, McFall SM, Klem TJ, Miyashita K, Chakrabarty AM (1999) Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 181:6697–6705

    CAS  PubMed  Google Scholar 

  • Perez-Pantoja D, Guzman L, Manzano M, Pieper DH, Gonzalez B (2000) Role of tfdCI DI EI FI and tfdDII CII EII FII gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 66:1602–1608

    CAS  PubMed  Google Scholar 

  • Perez-Pantoja D, Ledger T, Pieper DH, Gonzalez B (2003) Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359

    CAS  PubMed  Google Scholar 

  • Plumeier I, Perez-Pantoja D, Heim S, Gonzalez B, Pieper DH (2002) Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 184:4054–4064

    CAS  PubMed  Google Scholar 

  • Ravatn R, Studer S, Springael D, Zehnder AJB, van der Meer JR (1998) Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180:4360–4369

    CAS  PubMed  Google Scholar 

  • Saint CP, Romas P (1996) 4-Methylphthalate catabolism in Burkholderia (Pseudomonas) cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology 142:2407–2418

    PubMed  Google Scholar 

  • Sambrook J, Russel DW (eds) (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Shepherd JM, Lloyd-Jones G (1998) Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem Biophys Res Commun 247:129–135

    CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791

    CAS  Google Scholar 

  • Solyanikova IP, Maltseva OV, Vollmer MD, Golovleva LA, Schlömann M (1995) Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases. J Bacteriol 177:2821–2826

    CAS  PubMed  Google Scholar 

  • Sundin GW, Bender CL (1995) Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterizaion of IS 6100 in X. campestris. Appl Environ Microbiol 61:2891–2897

    CAS  PubMed  Google Scholar 

  • Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K (2002) Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol 184:5714–5722

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  PubMed  Google Scholar 

  • Thiel M, Schlömann M (2000) Detection and characterization of genes of chlorocatechol pathways in strains growing on chloroaromatic compounds. Biospektrum VAAM Jahrestagung abstr. 13.P.1.42

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Top EM, Holben WE, Forney LJ (1995) Characterization of diverse 2,4-dichlorophenoxyacetic acid degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61:1691–1698

    CAS  PubMed  Google Scholar 

  • Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Perez-Pantoja D, Sanchez MA, Stuardo M, Gonzalez B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

    Article  CAS  PubMed  Google Scholar 

  • Vallaeys T, Fulthorpe RR, Wright AM, Soulas G (1996) The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 20:163–172

    Article  CAS  Google Scholar 

  • Vallaeys T, Persello-Cartieaux F, Rouard N, Lors C, Laguerre G, Soulas G (1997) PCR-RFLP analysis of 16S rRNA, tfdA and tfdB genes reveals a diversity of 2,4-D degraders in soil aggregates. FEMS Microbiol Ecol 24:269–278

    CAS  Google Scholar 

  • Vedler E, Koiv V, Heinaru A (2000a) Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 255:281–288

    Article  CAS  PubMed  Google Scholar 

  • Vedler E, Koiv V, Heinaru A (2000b) TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2,4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Gene 245:161–168

    CAS  PubMed  Google Scholar 

  • Wilson K (2000) Preparation of genomic DNA from bacteria. In: Ausubel FM et al. (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

    Google Scholar 

  • Xia X, Bollinger J, Ogram A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol Ecol 4:17–28

    CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The investigations reported here were funded by grant 0311770 from the German Federal Ministry of Education and Research. We thank Hans-Joachim Knackmuss for the opportunity to perform the initial part of the experiments in the Institute for Microbiology at the University of Stuttgart. We thank James M. Tiedje for providing strain TFD44 and Walter Reineke for chloromuconic acids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlömann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, M., Kaschabek, S.R., Gröning, J. et al. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183, 80–94 (2005). https://doi.org/10.1007/s00203-004-0748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0748-3

Keywords

Navigation