Skip to main content

Advertisement

Log in

Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation plus alphacalcidol administration increased bone mass via a decrease of oxidative stress and inflammation suggest a significant role of GTP plus alphacalcidol in bone health of patients with chronic inflammation.

Introduction

Studies have suggested that green tea polyphenols (GTP) or alphacalcidol are promising dietary supplements for preventing bone loss in women. However, the mechanism(s) related to the possible osteo-protective role of GTP plus D3 in chronic inflammation-induced bone loss is not well understood.

Methods

This study evaluated bioavailability, efficacy, and related mechanisms of GTP in combination with alphacalcidol in conserving bone loss in rats with chronic inflammation. A 12-week study of 2 (no GTP vs. 0.5% GTP in drinking water) × 2 (no alphacalcidol vs. 0.05 μg/kg alphacalcidol, 5×/week) factorial design in lipopolysaccharide-administered female rats was performed. In addition, a group receiving placebo administration was used to compare with a group receiving lipopolysaccharide administration only to evaluate the effect of lipopolysaccharide.

Results

Lipopolysaccharide administration resulted in lower values for bone mass, but higher values for serum tartrate-resistant acid phosphatase (TRAP), urinary 8-hydroxy-2′-deoxyguanosine, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. GTP supplementation increased urinary epigallocatechin and epicatechin concentrations. Both GTP supplementation and alphacalcidol administration resulted in a significant increase in bone mass, but a significant decrease in serum TRAP levels, urinary 8-hydroxydeoxyguanosine levels, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. A synergistic effect of GTP and alphacalcidol was observed in these parameters. Neither GTP nor alphacalcidol affected femoral bone area or serum osteocalcin.

Conclusion

We conclude that a bone-protective role of GTP plus alphacalcidol during chronic inflammation bone loss may be due to a reduction of oxidative stress damage and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Dyke TE, Serhan CN (2003) Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res 82:82–90

    Article  PubMed  Google Scholar 

  2. Mann ST, Stracke H, Lange U, Klor HU, Teichmann J (2003) Alternations of bone mineral density and bone metabolism in patients with various grades of chronic pancreatitis. Metabolism 52:579–585

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein CN, Leslie WD, Taback SP (2003) Bone density in a population-based cohort or premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol 98:1094–1100

    Article  PubMed  Google Scholar 

  4. Romas E, Gillespie MT, Martin TJ (2000) Involvement of receptor activator of NF-κB ligand and tumor cecrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30:340–346

    Article  Google Scholar 

  5. Uaratanawong S, Deesomchoke U, Lertmaharit S et al (2003) Bone mineral density in premenopausal women with lupus erythematosus. J Rheumatol 30(11):2365–2368

    PubMed  Google Scholar 

  6. Abramson SB, Yazici Y (2006) Biologics in development for rheumatoid arthritis: relevance to osteoarthritis. Adv Drug Deliv Rev 58(2):212–215

    Article  CAS  PubMed  Google Scholar 

  7. Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T, Ito A (2003) An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med 197(10):1303–1310

    Article  CAS  PubMed  Google Scholar 

  8. Cochran DL (2008) Inflammation and bone loss in periodontal disease. J Periodontol 79(8 Suppl):1569–1576

    Article  CAS  PubMed  Google Scholar 

  9. Boulos P, Ioannidis G, Adachi JD (2002) Glucocorticoid-induced osteoporosis. Curr Rheumatol Rep 2(1):53–61

    Article  Google Scholar 

  10. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H (2007) Vascular calcification and osteoporosis—from clinical observation towards molecular understanding. Osteoporos Int 18(3):251–259 Review

    Article  CAS  PubMed  Google Scholar 

  11. Shen CL, Yeh JK, Cao JJ (2009) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem (in press)

  12. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  PubMed  Google Scholar 

  13. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46(11):1550–1555 Review

    Article  CAS  PubMed  Google Scholar 

  14. Mody N, Parhami F, Saraflan TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  15. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360(1–2):81–86

    Article  CAS  PubMed  Google Scholar 

  16. Manolagas SC (2008) De-fense! De-fense! De-fense: scavenging H2O2 while making cholesterol. Endocrinology 149(7):3264–3266

    Article  CAS  PubMed  Google Scholar 

  17. Garrett JR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  CAS  PubMed  Google Scholar 

  18. Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19(7):979–990

    Article  CAS  PubMed  Google Scholar 

  19. Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44(4):684–690

    Article  CAS  PubMed  Google Scholar 

  20. Shen CL, Yeh JK, Cao JJ (2009) Green tea and bone metabolism. Nutr Res 29(7):437–456 Review

    Article  CAS  PubMed  Google Scholar 

  21. Muraki S, Yamamoto S, Ishibashi H, Oka H, Yoshimura N, Kawaguchi H, Nakamura K (2007) Diet and lifestyle associated with increased bone mineral density: cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J Orthop Sci 12(4):317–320

    Article  PubMed  Google Scholar 

  22. Devine A, Hodgson JM, Dick IM, Prince RL (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86(4):1243–1247

    CAS  PubMed  Google Scholar 

  23. Chen Z, Pettinger MB, Ritenbaugh C, LaCroix AZ, Robbins J, Caan BJ, Barad DH, Hakim IA (2003) Habitual tea consumption and risk of osteoporosis: a prospective study in the women’s health initiative observational cohort. Am J Epidemiol 158(8):772–781

    Article  CAS  PubMed  Google Scholar 

  24. Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162(9):1001–1006

    Article  PubMed  Google Scholar 

  25. Hearty VM, May HM, Khaw KT (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71(4):1003–1007

    Google Scholar 

  26. Vali B, Rao LG, El-Sohemy A (2007) Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem 18(5):341–347

    Article  CAS  PubMed  Google Scholar 

  27. Takai S, Matsushima-Nishiwaki R, Adachi S, Natsume H, Minamitani C, Mizutani J, Otsuka T, Tokuda H, Kozawa O (2009) (−)-Epigallocatechin gallate reduces platelet-derived growth factor-BB-stimulated interleukin-6 synthesis in osteoblasts: suppression of SAPK/JNK. Mediators Inflamm 291808

  28. Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16(12):2039–2045

    Article  CAS  PubMed  Google Scholar 

  29. Ringe JD, Schacht E (2004) Prevention and therapy of osteoporosis: the roles of plain vitamin D and alfacalcido. Rheumatol Int 24(40):189–197

    CAS  PubMed  Google Scholar 

  30. Ringe JD, Faber H, Fahramand P (2005) Alfacalcidol versus plain vitamin D in the treatment of glucocorticoid/inflammation-induced osteoporosis. J Rheumatol Suppl 76:33–40

    CAS  PubMed  Google Scholar 

  31. Shiraishi A, Higashi S, Ohkawa H, Kubodera N, Hirasawa T, Ezawa I, Ikeda K, Ogata E (1999) The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif Tissue Int 65(4):311–316

    Article  CAS  PubMed  Google Scholar 

  32. Ringe JD, Schacht E (2007) Improving the outcome of established therapies for osteoporosis by adding the active D-hormone analog alfacalcidol. Rheumatol Int 28(2):103–111

    Article  CAS  PubMed  Google Scholar 

  33. Arabi A, Khoury N, Zahed L (2006) Regression of skeletal manifestations of hyperparathyroidism with oral vitamin D. J Clin Endocrinol Metab 91(7):2480–2483

    Article  CAS  PubMed  Google Scholar 

  34. Schacht E, Richy F, Reginster JY (2005) The therapeutic effects of alfacalcidol on bone strength, muscle metabolism and prevention of falls and fractures. J Musculoskelet Neuronal Interact 5(3):273–284

    CAS  PubMed  Google Scholar 

  35. Iwamoto J, Seki A, Takeda T, Yamada H, Sato Y, Yeh JK (2007) Effects of alfacalcidol on cancellous and cortical bone mass in rats treated with glucocorticoid: a bone histomorphometry study. J Nutr Sci Vitaminol (Tokyo) 53(3):191–197

    Article  CAS  Google Scholar 

  36. Scharla SH, Schacht E, Lempert UG (2005) Alfacalcidol versus plain vitamina D in inflammation induced bone loss. J Rheumatol Suppl 76:26–32

    CAS  PubMed  Google Scholar 

  37. Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA, Smith BJ (2008) Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int 82(6):475–488

    Article  CAS  PubMed  Google Scholar 

  38. Wang JS, Luo H, Wang P, Tang L, Yu J, Huang T, Cox S, Gao W (2008) Validation of green tea polyphenol biomarkers in a phase II human intervention trial. Food Chem Toxicol 46(1):232–240

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto J, Takeda T, Matsumoto H, Sato Y, Yeh JK (2008) Beneficial effects of combined administration of alendronate and alfacalcidol on cancellous bone mass of the tibia in orchidectomized rats: a bone histomorphometry study. J Nutr Sci Vitaminol 54(1):11–17

    Article  CAS  PubMed  Google Scholar 

  40. Iwamoto J, Matsumoto H, Takeda T, Sato Y, Liu X, Yeh JK (2008) Effects of vitamin K2 and residronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int 83:121–128

    Article  CAS  PubMed  Google Scholar 

  41. Sánchez-Lemus E, Benicky J, Pavel J, Larrayoz IM, Zhou J, Baliova M, Nishioku T, Saavedra JM (2009) Angiotensin II AT1 blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. Am J Physiol Regul Integr Comp Physiol 296(5):R1376–R1384

    PubMed  Google Scholar 

  42. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS, Brackett DJ (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38(3):378–386

    Article  CAS  PubMed  Google Scholar 

  43. Droke EA, Hager KA, Lerner MR, Lightfoot SA, Stoecker BJ, Brackeet DJ, Smith BJ (2007) Soy isoflavones avert chronic inflammation induced bone loss and vascular disease. J Inflamm (Lond) 4:17

    Article  Google Scholar 

  44. Shen CL, Yeh JK, Cao J, Stoecker BJ, Samathanam C, Graham S, Tatum O, Dagda R, Tubb C, Wang JS (2009) Green tea polyphenols and vitamin D3 protect bone microarchitecture in female rats with chronic inflammation. J Bone Miner Res 24S1:227

    Google Scholar 

  45. Luo H, Tang L, tang M, Billam M, Huang T, Yu J, Wei Z, Liang Y, Wang K, Zhang ZQ, Zhang L, Wang JS (2006) Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 27(2):262–268

    Article  CAS  PubMed  Google Scholar 

  46. Lee MJ, Maliakal P, Chen L, Meng Z, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3 gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11(10 Pt 1):1025–1032

    CAS  PubMed  Google Scholar 

  47. Chen H, Tian X, Liu X, Setterberg RB, Li M, Jee WS (2008) Alfacalcidol-stimulated focal bone formation on the cancellous surface and increased bone formation on the periosteal surface of the lumbar vertebrae of adult female rats. Calcil Tissue Int 82(2):127–136

    Article  CAS  Google Scholar 

  48. Shiraki M, Fukuchi M, Kiriyama T, Okamoto S, Ueno T, Sakamoto H, Nagai T (2004) Alfacalcidol reduces accelerated bone turnover in elderly women with osteoporosis. J Bone Miner Metab 22(4):352–359

    Article  CAS  PubMed  Google Scholar 

  49. Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS, Chai JK, Kim CK, Choi SH (2004) Inhibitory effects of green tea polyphenol (−)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclasts. J Periodontal Res 39(5):300–307

    Article  CAS  PubMed  Google Scholar 

  50. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Le IS, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (−)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292(1):94–101

    Article  CAS  PubMed  Google Scholar 

  51. Nakagawa H, Hasumi K, Takami M, Aida-Hyugaji S, Woo JT, Nagai K, Ishikawa T, Wachi M (2007) Identification of two biologically crucial hydroxyl groups of (−)-epigallocatechin gallate in osteoclast culture. Biochem Pharmacol 73(1):34–43

    Article  CAS  PubMed  Google Scholar 

  52. Hafeez BB, Ahmed S, Wang N, Gupta S, Zhang A, Haqqi TM (2006) Green tea polyphenols induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB. Toxicol Appl Pharmacol 216(1):11–19

    Article  PubMed  Google Scholar 

  53. Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ (2009) (−) Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem Biophys Res Commun 379(4):1033–1037

    Article  CAS  PubMed  Google Scholar 

  54. Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M (2005) Antitumor effect of nutrient synergy on human osteosarcoma cells U-2OS, MNNG-HOS and Ewing’s sarcoma SK ES.1. Oncol Rep 13(2):253–257

    CAS  PubMed  Google Scholar 

  55. Nakagawa H, Hasumi K, Woo JT, Nagai K, Wachi M (2004) Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (−)-epigallocatechin gallate. Carcinogenesis 25(9):1567–1574

    Article  CAS  PubMed  Google Scholar 

  56. Islam S, Islam N, Kermode T, Johnstone B, Mukhtar H, Moskowitz RW, Goldberg VM, Malemud CJ, Haqqi TM (2001) Involvement of caspase-3 in epigallocatechin-3 gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun 270(3):793–797

    Article  Google Scholar 

  57. Delaissé JM, Eeckhout Y, Vaes G (1986) Inhibition of bone resorption in culture by (+) catechin. Biochem Pharmacol 35(18):3091–3014

    Article  PubMed  Google Scholar 

  58. Nakamura H, Ukai T, Yoshimura A, Kozuka Y, Yoshioka H, Yoshinaga Y, Abe Y, Hara Y (2009) Green tea catechin inhibits lipopolysaccharide-induced bone resorption in vivo. J Periodontal Res (in press)

  59. Sakai A, Nishida S, Nishida S, Tsutsui T, Takeuchi K, Takeda S, Nakamura T (2001) 1alpha hydroxyvitamin D3 suppresses trabecular bone resorption by inhibiting osteoclastogenic potential in bone marrow cells after ovariectomy in mic. J Bone Miner Metab 19(5):277–286

    Article  CAS  PubMed  Google Scholar 

  60. Shibata T, Shira-Ishi A, Sato T, Masaki T, Masuda A, Hishiya A, Ishikura N, Higashi S, Uchida Y, Sato MO, Ito M, Ogata E, Watanabe K, Ikeda K (2002) Vitamin D hormone inhibits osteoclastogenesis in vivo by decreasing the pool of osteoclast recursors in bone marrow. J Bone Miner Res 17(4):622–629

    Article  CAS  PubMed  Google Scholar 

  61. Weber K, Kaschig C, Erben RG (2004) 1 Alpha-hydroxyvitamin D2 and 1 alpha hydroxyvitamin D3 have anabolic effects on cortical bone, but induce intracortical remodeling at toxic doses in ovariectomized rats. Bone 35(3):704–710

    Article  CAS  PubMed  Google Scholar 

  62. Mundy GR (2003) Cytokine and growth factors in the regulation of bone remodeling. J Bone Miner Res 8(suppl 2):S505–S510

    Google Scholar 

  63. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325

    Article  CAS  PubMed  Google Scholar 

  64. Rauner M, Sipos W, Pietschmann P (2006) Osteoimmunology. Int Arch Allergy Immunol 143(1):31–48

    Article  PubMed  Google Scholar 

  65. Cohen S (2006) Role of RANK ligand in normal and pathologic bone remodeling and the therapeutic potential of novel inhibitory molecules in musculoskeletal diseases. Arthritis Rheum 55(1):15–18

    Article  CAS  PubMed  Google Scholar 

  66. Ralston SH, Ho L-P, Helfrich MH, Grabowski PS, Johnston PW, Benjamin N (1995) Nitric oxide: a cytokin-induced regulator of bone resorption. J Bone Miner Res 10:1040–1049

    Article  CAS  PubMed  Google Scholar 

  67. Balga R, Wetterwald A, Portenier J, Dolder S, Mueller C, Hofstetter W (2006) Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 39(2):325–335

    Article  CAS  PubMed  Google Scholar 

  68. Armour KJ, Armour KE, van’t Hof RJ, Reid DM, Wei XQ, Liew FY, Ralston SH (2001) Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum 44(12):2790–2796

    Article  CAS  PubMed  Google Scholar 

  69. Dumitrescu AL, Abd-El-Aleem S, Morales-Aza B, Donaldson LF (2004) A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 31(8):596–603

    Article  CAS  PubMed  Google Scholar 

  70. Li L, Pettit AR, Gregory LS, Forwood MR (2006) Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): a rose by any other name. Cytokine Growth Factor Rev 17(3):203–216

    Article  PubMed  Google Scholar 

  71. Okada Y, Pilbeam C, Raisz L, Tanaka Y (2003) Role of cyclooxygenase-2 in bone resorption. J UOEH 25(2):185–195

    CAS  PubMed  Google Scholar 

  72. Kobayashi Y, Take I, Yamashita T, Mizoguchi T, Ninomiya T, Hattori T, Jurihara S, Ozawa H, Udagawa N, Takahashi N (2005) Prostaglandin E2 receptors EP2 and EP4 are down-regulated during differentiation of mouse osteoclasts from their precursors. J Biol Chem 280(25):24035–24042

    Article  CAS  PubMed  Google Scholar 

  73. Take I, Kobayashi Y, Yamamoto Y, Tsuboi H, Ochi T, Uematsu S, Okafuji N, Kurihara S, Udagawa N, Takahashi N (2005) Prostaglandin E2 strongly inhibits human osteoclast formation. Endocrinology 146(12):5204–5214

    Article  CAS  PubMed  Google Scholar 

  74. Akaogi J, Nozaki T, Satoh M, Yamada H (2006) Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy. Endocr Metab Immune Disord Drug Targets 6(4):383–394

    CAS  PubMed  Google Scholar 

  75. Watkins BA, Li Y, Allen KG, Hoffmann WE, Seifert MF (2000) Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 130(9):2274–2284

    CAS  PubMed  Google Scholar 

  76. Ono K, Kaneko H, Choudhary S, Pilbeam CC, Lorenzo JA, Akatsu T, Kugai N, Raisz LG (2005) Biphasic effect of prostaglandin E2 on osteoclast formation in spleen cell cultures: role of the EP2 receptor. J Bone Miner Res 20(1):23–29

    Article  CAS  PubMed  Google Scholar 

  77. Raisz LG, Fall PM (1990) Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Endocrinology 126(3):1654–1659

    Article  CAS  PubMed  Google Scholar 

  78. Kong YY, Penninger JM (2000) Molecular control of bone remodeling and osteoporosis. Exp Gerontol 35(8):947–956 Review

    Article  CAS  PubMed  Google Scholar 

  79. Jones DH, Kong YY, Penninger JM (2002) Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis 61(Suppl 2):ii32–ii39 Review

    CAS  PubMed  Google Scholar 

  80. Wei S, Teitelbaum SL, Wang MW, Ross FP (2001) Receptor activator of nuclear factor kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 142(3):1290–1295

    Article  CAS  PubMed  Google Scholar 

  81. Cao H, Kelly MA, Kari F, Dawson HD, Urban JF Jr, Coves S, Roussel AM, Anderson RA (2007) Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. J Inflamm (Lond) 4:1

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Laura W. Bush Institute for Women’s Health and National Institutes of Health/National Center for Complementary and Alternative Medicine grant R21AT003735 (CLS) and the National Institutes of Health/National Cancer Institute grant CA90997 (JSW).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-L. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, CL., Yeh, J.K., Cao, J.J. et al. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats. Osteoporos Int 21, 1841–1852 (2010). https://doi.org/10.1007/s00198-009-1122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1122-8

Keywords

Navigation