Skip to main content
Log in

The effect of telomere length, a marker of biological aging, on bone mineral density in elderly population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Telomere length (TL), as a reflection of aging and inflammatory processes, may be associated with bone mineral density (BMD). This study examines the association between TL and BMD cross-sectionally and the rate of bone loss over a 4-year period in 1,867 Chinese elderly community living subjects. After adjusting for confounding factors, no association was observed with BMD or bone loss. The decline in BMD with aging is not reflected by corresponding changes in telomere length.

Introduction

Bone mineral density (BMD) is influenced by the dynamics of aging, inflammatory, and bone remodeling processes. Telomere length (TL) is a reflection of the former two processes and may also be associated with bone loss.

Methods

Hip BMD was measured in 1,867 Chinese elderly community living subjects and the relationship between leukocyte TL measured using quantitative real-time polymerase chain reaction, and bone loss after 4 years was examined.

Results

Women had greater bone loss than men. In women, age of menopause, menarche, estrogen treatment/replacement therapy, and history of previous fracture were also among the significant covariates. However, in multivariate analyses, TL was not associated with BMD in either sex.

Conclusions

TL was not associated with either baseline BMD or bone loss over 4 years and accounted for less than 1.6% of the baseline BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vogel T, Bitterling H, Dobler T et al (2006) Contemporary diagnostics and therapy of osteoporosis. Zentralbl Chir 131:401–406

    Article  CAS  PubMed  Google Scholar 

  2. Meunier PJ, Delmas PD, Eastell R et al (1999) Diagnosis and management of osteoporosis in postmenopausal women: clinical guidelines. International Committee for Osteoporosis Clinical Guidelines. Clin Ther 21:1025–1044

    Article  CAS  PubMed  Google Scholar 

  3. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  4. Cauley JA, Hochberg MC, Lui LY et al (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767

    Article  CAS  PubMed  Google Scholar 

  5. Gnudi S, Sitta E, Fiumi N (2007) Bone density and geometry in assessing hip fracture risk in post-menopausal women. Br J Radiol 80:893–897

    Article  CAS  PubMed  Google Scholar 

  6. Cauley JA, Lui LY, Barnes D et al (2008) Successful skeletal aging: a marker of low fracture risk and longevity. The study of osteoporotic fractures (SOF). J Bone Miner Res 24(1):134–143

    Article  Google Scholar 

  7. Leslie WD, Tsang JF, Lix LM (2008) Validation of ten-year fracture risk prediction: a clinical cohort study from the Manitoba Bone Density Program. Bone 43:667–671

    Article  PubMed  Google Scholar 

  8. Papaioannou A, Kennedy CC, Cranney A et al (2008) Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int 20:507–518

    Article  PubMed  Google Scholar 

  9. Aviv A, Levy D, Mangel M (2003) Growth, telomere dynamics and successful and unsuccessful human aging. Mech Ageing Dev 124:829–837

    Article  CAS  PubMed  Google Scholar 

  10. Martens UM, Chavez EA, Poon SSS et al (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 256:291–299

    Article  CAS  PubMed  Google Scholar 

  11. Murnane JP, Sabatier L (2004) Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 26:1164–1174

    Article  CAS  PubMed  Google Scholar 

  12. Pignolo RJ, Suda RK, McMillan EA et al (2008) Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7:23–31

    Article  CAS  PubMed  Google Scholar 

  13. Goronzy JJ, Fujii H, Weyand CM (2006) Telomeres, immune aging and autoimmunity. Exp Gerontol 41:246–251

    Article  CAS  PubMed  Google Scholar 

  14. van der Harst P, van der Steege G, de Boer RA et al (2007) Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol 49:1459–1464

    Article  PubMed  CAS  Google Scholar 

  15. Magana JJ, Gomez R, Cisneros B et al (2008) Association of interleukin-6 gene polymorphisms with bone mineral density in Mexican women. Arch Med Res 39:618–624

    Article  CAS  PubMed  Google Scholar 

  16. Perez A, Ulla M, Garcia B et al (2008) Genotypes and clinical aspects associated with bone mineral density in Argentine postmenopausal women. J Bone Miner Metab 26:358–365

    Article  CAS  PubMed  Google Scholar 

  17. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    Article  CAS  PubMed  Google Scholar 

  18. Tran BN, Nguyen ND, Eisman JA et al (2008) Association between LRP5 polymorphism and bone mineral density: a Bayesian meta-analysis. BMC Med Genet 9:55

    Article  PubMed  CAS  Google Scholar 

  19. Kiel DP, Demissie S, Dupuis J et al (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S14

    Article  PubMed  CAS  Google Scholar 

  20. Richards JB, Rivadeneira F, Inouye M et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    Article  CAS  PubMed  Google Scholar 

  21. Takayanagi H, Sato K, Takaoka A et al (2005) Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 208:181–193

    Article  CAS  PubMed  Google Scholar 

  22. Almeida M, Han L, Martin-Millan M et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E et al (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    Article  PubMed  CAS  Google Scholar 

  24. Altindag O, Erel O, Soran N et al (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321

    Article  CAS  PubMed  Google Scholar 

  25. Bekaert S, Van Pottelbergh I, De Meyer T et al (2005) Telomere length versus hormonal and bone mineral status in healthy elderly men. Mech Ageing Dev 126:1115–1122

    Article  CAS  PubMed  Google Scholar 

  26. Valdes AM, Richards JB, Gardner JP et al (2007) Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18:1203–1210

    Article  CAS  PubMed  Google Scholar 

  27. Woo J, Tang NL, Suen E et al (2008) Telomeres and frailty. Mech Ageing Dev 129:642–648

    Article  CAS  PubMed  Google Scholar 

  28. Lau EM, Chan HH, Woo J et al (1996) Normal ranges for vertebral height ratios and prevalence of vertebral fracture in Hong Kong Chinese: a comparison with American Caucasians. J Bone Miner Res 11:1364–1368

    Article  CAS  PubMed  Google Scholar 

  29. Washburn RA, Smith KW, Jette AM et al (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162

    Article  CAS  PubMed  Google Scholar 

  30. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    Article  PubMed  Google Scholar 

  31. Gil ME, Coetzer TL (2004) Real-time quantitative PCR of telomere length. Mol Biotechnol 27:169–172

    Article  CAS  PubMed  Google Scholar 

  32. Norwood D, Dimitrov DS (1998) Sensitive method for measuring telomere lengths by quantifying telomeric DNA content of whole cells. Biotechniques 25:1040–1045

    CAS  PubMed  Google Scholar 

  33. Baird DM (2005) New developments in telomere length analysis. Exp Gerontol 40:363–368

    Article  CAS  PubMed  Google Scholar 

  34. Gardner JP, Kimura M, Chai W et al (2007) Telomere dynamics in macaques and humans. J Gerontol A Biol Sci Med Sci 62:367–374

    PubMed  Google Scholar 

  35. Strike PW (1991) Statistical methods in laboratory medicine. Chapter 8.9. Measurement and control-precision. Butterworth-Heinemann, Oxford. pp. 273-276.

  36. Ho AY, Kung AW (2005) Determinants of peak bone mineral density and bone area in young women. J Bone Miner Metab 23:470–475

    Article  PubMed  Google Scholar 

  37. Brouilette SW, Moore JS, McMahon AD et al (2007) Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369:107–114

    Article  CAS  PubMed  Google Scholar 

  38. Cherkas LF, Hunkin JL, Kato BS et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168:154–158

    Article  PubMed  Google Scholar 

  39. Aviv A (2008) The epidemiology of human telomeres: faults and promises. J Gerontol Med Sci 63A:979–983

    CAS  Google Scholar 

  40. Lau EMC, Choy DT, Li M, Woo J, Chung T, Sham A (2004) The relationship between COLIA 1 polymorphisms (SP I) and COLIA 2 Polymorphisms (ECO R1 and Puv II) with bone mineral density in Chinese men and women. Calcif Tissue Int 75:133–137

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Lau EMC, Woo J (2004) Methylenetetrahydrofolate reductase polymorphism (MTHFR C677T) and bone mineral density in Chinese men and women. Bone 35:1369–1374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Direct Grant from the Chinese University of Hong Kong, the Centre for Nutritional Studies, School of Public Health, and the Hong Kong Jockey Club Charities Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, N.L.S., Woo, J., Suen, E.W.C. et al. The effect of telomere length, a marker of biological aging, on bone mineral density in elderly population. Osteoporos Int 21, 89–97 (2010). https://doi.org/10.1007/s00198-009-0948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0948-4

Keywords

Navigation