Skip to main content

Advertisement

Log in

Polypropylene mesh and the host response

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

The use of polypropylene (PP) mesh for pelvic floor repair has been increasing dramatically over the past decade; however, tissue response in humans has not been extensively studied. This review discusses PP mesh and postimplantation host tissue response. Emphasis is placed on studies investigating the relationship between individual mesh properties and specific responses. There is an immediate inflammatory response after PP mesh implantation that lays the framework for tissue ingrowth and subsequent mesh integration. This response varies based on physical properties of individual mesh, such as pore size, weight, coatings, bacterial colonization, and biofilm production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maher C, Feiner B, Baessler K, Glazener CMA (2010) Surgical management of pelvic organ prolapse in women. Cochrane Database of Systematic Reviews, issue 4

  2. U. S. Food and Drug Administration. FDA Safety Communication: UPDATE on Serious Complications Associated with Transvaginal Placement of Surgical Mesh for Pelvic Organ Prolapse. July 2011. From: http://www.fda.gov/medicaldevices/safety/alertsandnotices/ucm262435.htm

  3. Surgical repair of vaginal wall prolapse using mesh. National Institute for Health and Clinical Excellence. June 2008. From: http://guidance.nice.org.uk/IPG267/Guidance/pdf/English

  4. Treating vaginal wall prolapse with surgery using mesh. National Institute for Health and Clinical Excellence. June 2008. From: http://guidance.nice.org.uk/IPG267/PublicInfo/pdf/English

  5. Jackson SR, Avery NC, Tarlton JF, Eckford SD, Abrams P, Bailey AJ (1996) Changes in metabolism of collagen in genitourinary prolapse. Lancet 347:1658–1661

    Article  PubMed  CAS  Google Scholar 

  6. Kerkhof MH, Hendriks L, Brolmann HA (2009) Changes in connective tissue in patients with pelvic organ prolapse-a review of the current literature. Int Urogynecol J Pelvic Floor Dysfunct 20:461–474

    Article  PubMed  CAS  Google Scholar 

  7. Krause HG, Galloway SJ, Khoo SK, Lourie R, Goh JTW (2006) Biocompatible properties of surgical mesh using an animal model. Aust N Z J Obstet Gynecol 46:42–45

    Article  Google Scholar 

  8. Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Article  Google Scholar 

  9. Cosson M, Debodinance P, Boukerrou M et al (2003) Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material? Int Urogynecol J 14:169–178

    Article  Google Scholar 

  10. Junge K, Rosch R, Anurov M et al (2006) Modification of collagen formation using supplemented mesh materials. Hernia 10:492–497

    Article  PubMed  CAS  Google Scholar 

  11. Thiel M, Rodrigues Palma PC, Riccetto CL, Dambros M, Netto NR Jr (2005) A sterological analysis of fibrosis and inflammatory reaction induced by four different synthetic slings. BJU Int 95:833–837

    Article  PubMed  Google Scholar 

  12. de Almeida SHM, Rodrigues MA, Gregório E, Crespígio J, Moreira HA (2007) Influence of sling material on inflammation and collagen deposit in an animal model. Int J Uro 14:1040–1043

    Article  Google Scholar 

  13. Junge K, Klinge U, Klosterhalfen B et al (2002) Influence of mesh materials on collagen deposition in a rat model. J Invest Surg 15:319–328

    Article  PubMed  CAS  Google Scholar 

  14. Pascual G, Rodriguez M, Gomez-Gil V, García-Honduvilla N, Buján J, Bellón JM (2008) Early tissue incorporation and collagen deposition in lightweight polypropylene meshes: bioassay in an experimental model of ventral hernia. Surgery 144:427–35

    Article  PubMed  Google Scholar 

  15. Anderson JM, Rodriguez A, Chang D (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  PubMed  CAS  Google Scholar 

  16. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  PubMed  CAS  Google Scholar 

  17. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–703

    Article  PubMed  CAS  Google Scholar 

  18. Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci 95(15):8841–6

    Article  PubMed  CAS  Google Scholar 

  19. Xia Z, Triffitt JT (2006) A review on macrophage responses to biomaterials. Biomed Mater 1:R1–R9

    Article  PubMed  CAS  Google Scholar 

  20. Collier TO, Anderson JM, Kikuchi A, Okano T (2002) Adhesion behavior of monocytes, macrophages, and foreign body giant cells on poly (N-isopropylacrylamide) temperature-responsive surfaces. J Biomed Mater Res 59:136–143

    Article  PubMed  CAS  Google Scholar 

  21. Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T, Anderson JM (2003) In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 64(2):320–9

    Article  PubMed  Google Scholar 

  22. Di Vita G, Milano S, Patti R et al (2001) Cytokine modifications after tension-free hernioplasty or open conventional inguinal hernia repair. Am J Surg 181(6):487–491

    Article  PubMed  Google Scholar 

  23. Di Vita G, D’ Agostino P, Patti R et al (2005) Acute inflammatory response alter inguinal and incisional hernia repair with implantation of polypropylene mesh of different size. Langenbecks Arch Surg 390:301–311

    Google Scholar 

  24. Rechberger T, Jankiewicz K, Adamiak A, Miotla P, Chrobak A, Jerzak M (2009) Do preoperative cytokine levels offer a prognostic factor for polypropylene mesh erosion after suburethral sling surgery for stress urinary incontinence? Int Urogynecol J 20:69–74

    Article  Google Scholar 

  25. Orenstein SB, Saberski ER, Klueh U (2010) Effects of mast cell modulation on early host response to implanted synthetic meshes. Hernia 14:511–516

    Article  PubMed  CAS  Google Scholar 

  26. Junge K, Binnebosel M, Rosch R et al (2009) Impact of proinflammatory cytokine knockout on mesh integration. J Invest Surg 22:256–262

    Article  PubMed  Google Scholar 

  27. Pierce LM, Rao A, Baumann SS, Glassberg JE, Kuehl TJ, Muir TW (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am J Obstet Gynecol 546:e1–e8

    Google Scholar 

  28. Ott R, Hartwig T, Tannapfel A et al (2007) Biocompatibility of bacterial contaminated prosthetic meshes and porcine dermal collagen used to repair abdominal wall defects. Langenbecks Arch Surg 392:473–478

    Article  PubMed  CAS  Google Scholar 

  29. Culligan P, Heit M, Blackwell L, Murphy M, Graham CA, Snyder J (2003) Bacterial colony counts during vaginal surgery. Infect Dis Obstet Gynecol 11:161–5

    Article  PubMed  Google Scholar 

  30. Vollebregt A, Troelstra A, Huub van der Vaart C (2009) Bacterial colonization of collagen-coated polypropylene vaginal mesh: are additional intraoperative sterility procedures useful? Int Urogynecol J 20:1345–1351

    Article  Google Scholar 

  31. Wang AC, Wu R, Lin C (2008) A microbiological and immunohistochemical analysis of periurethral and vaginal tissue in women with de novo urge symptoms after mid-urethral sling procedures-a prospective case-controlled study. Int Urogynecol J 19:1145–1150

    Article  CAS  Google Scholar 

  32. Sternberg C, Christensen BB, Johansen T et al (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65(9):4108–4117

    PubMed  CAS  Google Scholar 

  33. Kathju S, Nistico L, Lasko L, Stoodley S (2010) Bacterial biofilm on monofilament suture and porcine xenograft after inguinal herniorrhaphy. FEMS Immunol Med Microbiol 59:405–409

    PubMed  CAS  Google Scholar 

  34. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  35. Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Investigation of ciprofloxacin penetration into pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38(9):2125–2133

    PubMed  CAS  Google Scholar 

  36. Bjarnsholt T, Jensen PO, Fiandaca MJ (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558

    Article  PubMed  Google Scholar 

  37. Hoyle BD, Costerton JW (1989) Transient exposure to physiologically-relevant concentration of calcium confers tobramycin resistance upon sessile cells of pseudomonas aeruginosa. FEMS Microbiol Let 60:339–342

    Article  CAS  Google Scholar 

  38. Evans DJ, Brown MR, Allison DG, Gilbert P (1990) Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle. J Antimicro Chemotherap 25:585–591

    Article  CAS  Google Scholar 

  39. Gao M, Han J, Tian J, Yang K (2010) Vypro II mesh for inguinal hernia repair. Ann Surg 251(5):838–842

    Article  PubMed  Google Scholar 

  40. Klinge U, Schumpelick V, Klosterhalfen B (2001) Functional assessment and tissue response of short and long term absorbable surgical meshes. Biomaterials 22:1415–1424

    Article  PubMed  CAS  Google Scholar 

  41. Rosch R, Junge K, Schachtrupp A, Klinge U, Klosterhalfen B, Schumpelick V (2003) Mesh implants in hernia repair. Eur Surg Res 35:161–165

    Article  PubMed  CAS  Google Scholar 

  42. Rosch R, Junge K, Quester R, Klinge U, Klosterhalfen B, Schumpelick V (2003) Vypro II mesh in hernia repair: impact of polyglactin on long term incorporation in rats. Eur Surg Res 35:445–450

    Article  PubMed  CAS  Google Scholar 

  43. Krause HG, Galloway SJ, Khoo SK, Lourie R, Goh JT (2006) Biocompatible properties of surgical mesh using an animal model. Aust N Z J Obstet Gynaecol 46:42–45

    Article  PubMed  Google Scholar 

  44. Junge K, Rosch R, Krones CJ et al (2005) Influence of polyglecaprone 25 (monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9:212–217

    Article  PubMed  CAS  Google Scholar 

  45. Bellon JM, Garcia-Honduvilla N, Serrano N, Rodríguez M, Pascual G, Buján J (2005) Composite prostheses for the repair of abdominal wall defects: effect of the structure of the adhesion barrier component. Hernia 9:338–343

    Article  PubMed  CAS  Google Scholar 

  46. Papademetriou P, Petros P (2005) Histological studies of monofilament and multifilament polypropylene mesh implants demonstrate equivalent penetration of macrophages between fibrils. Hernia 9:75–78

    Article  Google Scholar 

  47. Kumazawa R, Watari F, Takashi N, Tanimura Y, Uo M, Totsuka Y (2002) Effects of ti ions and particles on neutrophil function and morphology. Biomaterials 23:3757–3764

    Article  PubMed  CAS  Google Scholar 

  48. Biomet 2011. From: http://www.biomet.com/biologics/timesh.cfm

  49. Scheidbach H, Tannapfel A, Schmidt U, Lippert H, Köckerling F (2004) Influence of titanium coating on the biocompatibility of a heavyweight polypropylene mesh. Eur Surg Res 36:313–317

    Article  PubMed  CAS  Google Scholar 

  50. Junge K, Rosch R, Klinge U et al (2005) Titanium coating of a propylene mesh for hernia repair: effect on biocompatibility. Hernia 9:115–119

    Article  PubMed  CAS  Google Scholar 

  51. Ku C, Browne M, Gregson PJ, Corbeil J, Pioletti DP (2002) Large scale gene expression analysis of osteoblasts cultured on three different Ti-6A1-4V surface treatments. Biomaterials 23:4193–4202

    Article  PubMed  CAS  Google Scholar 

  52. Carinci F, Volinia S, Pezzetti F, Francioso L, Tosi L, Piatelli A (2003) Titanium cell interaction: analysis of gene expression profiling. J Biomed Mater Res 66B:341–346

    Article  CAS  Google Scholar 

  53. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen based biomaterials for tissue engineering applications. Mater 3:1863–1887

    Article  CAS  Google Scholar 

  54. Sergent F, Resch B, Al-khattabi M, Ricbourg A, Schaal JP, Marpeau L (2011) Transvaginal mesh repair of pelvic organ prolapse by the transobturator-infracoccygeal hammock technique: long term anatomical and functional outcomes. Neurourol Urodynam 30:384–389

    Article  Google Scholar 

  55. Huffaker RK, Muir TW, Rao A, Baumann SS, Kuehl TJ, Pierce LM (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198:582.e1–582.e7

    Article  Google Scholar 

  56. De Tayrac R, Alves A, Therin M (2007) Collagen-coated vs. noncoated low-weight polypropylene meshes in a sheep model for vaginal surgery. A pilot study. Int Urogynecol J 18:513–520

    Article  Google Scholar 

  57. Pierce LM, Asarias JR, Nguyen PT, Mings J, Gehrich A (2011) Inflammatory cytokine and matrix metalloproteinase expression induced by collagen-coated and uncoated polypropylene meshes in a rat model. Am J Obstet Gynecol 205:82.e1–9

    Article  Google Scholar 

  58. van Luyn MJA, van Wachem PB, Olde Damink LHH, Dijkstra PJ, Feijen J, Nieuwenhuis P (1992) Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. J Biomed Mater Res 26:1091–1110

    Article  PubMed  Google Scholar 

  59. Chu CC, Welch L (1985) Characterization of morphological and mechanical properties of surgical mesh fabrics. J Biomed Mater Res 19:903–916

    Article  PubMed  CAS  Google Scholar 

  60. Pourdeyhimi B (1989) Porosity of surgical mesh fabric: new technology. J Biomed Mater Res 23:145–152

    Article  PubMed  CAS  Google Scholar 

  61. Bazi TM, Hamade RF, Hussein IAH, Nader KA, Jurjus A (2007) Polypropylene midurethral tapes do not have similar biologic and biomechanical performance in the rat. Eur Urol 51:1364–1375

    Article  PubMed  Google Scholar 

  62. Dora CD, Dimarco DS, Zobitz ME, Elliott DS (2004) Time dependent variations in biomechanical properties of cadaveric fascia, porcine dermis, porcine small intestine submucosa, polypropylene mesh and autologous fascia in the Rabbit model: implications for sling surgery. J Urol 171:1970–1973

    Article  PubMed  Google Scholar 

  63. Bringman S, Conze J, Cuccurullo D et al (2010) Hernia repair: the search for ideal meshes. Hernia 14:81–87

    Article  PubMed  CAS  Google Scholar 

  64. Agarwal BB, Agarwal KA, Mahajan KC (2009) Prospective double-blind randomized controlled study comparing heavy and lightweight polypropylene mesh in totally extraperitoneal repair of inguinal hernia: early results. Surg Endosc 23:242–247

    Article  PubMed  Google Scholar 

  65. Horstmann R, Hellwig M, Classen C, Röttgermann S, Palmes D (2006) Impact of polypropylene amount on functional outcome and quality of life after inguinal hernia repair by the TAPP procedure using pure, mixed, and titanium coated meshes. World J Surg 30:1–8

    Article  Google Scholar 

  66. Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2(1):103–117

    Article  PubMed  Google Scholar 

  67. Deffieux X, Tayrac R, Huel C et al (2007) Vaginal mesh erosion after transvaginal repair of cystocele using Gynemesh or Gynemesh-Soft in 138 women: a comparative study. Int Urogynecol J 18:73–79

    Article  CAS  Google Scholar 

  68. Klinge U, Junge K, Stumpf M, Öttinger AP, Klosterhalfen B (2002) Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res 63:129–136

    Article  PubMed  CAS  Google Scholar 

  69. Novitsky YW, Cristiano JA, Harrell AG et al (2008) Immunohistochemical analysis of host reaction to heavyweight, reduced weight, and expanded polytetrafluoroethylene (ePTFE)-based meshes after short and long term intraabdominal implantations. Surg Endosc 22:1070–1076

    Article  PubMed  CAS  Google Scholar 

  70. Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 63:765–771

    Article  PubMed  CAS  Google Scholar 

  71. Taylor DF, Smith FB (1972) Porous methyl methacrylate as an implant material. J Biomed Mater Res Symp 2(2):467–479

    Article  Google Scholar 

  72. Chvapil M, Holuša R, Kliment K, Štoll M (1969) Some chemical and biological characteristics of a new collagen-polymer compound material. J Biomed Mater Res 3:315–332

    Article  PubMed  CAS  Google Scholar 

  73. Bobyn JD, Wilson GJ, MacGregor DC, Pillar RM, Weatherly GC (1982) Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. J Biomed Mater Res 16:571–584

    Article  PubMed  CAS  Google Scholar 

  74. Greca FH, de Paula JB, Biondo-Simoes MLP et al (2001) The influence of differing pore sizes on the biocompatibility of two polypropylene meshes in the repair of abdominal defects. Hernia 5:59–64

    Article  PubMed  CAS  Google Scholar 

  75. Greca FH, Souza-Filho ZA, Giovanini A et al (2008) The influence of porosity on the integration histology of two polypropylene meshes for the treatment of abdominal wall defects in dogs. Hernia 12:45–49

    Article  PubMed  CAS  Google Scholar 

  76. Williams DF (1982) Review biodegradation of surgical polymers. J Mater Sci 17:1233–1246

    Article  CAS  Google Scholar 

  77. Jongebloed WL, Worst JF (1986) Degradation of polypropylene in the human eye: a sem-study. Docu Ophthal 64:143–152

    Article  CAS  Google Scholar 

  78. Coda A, Bendavid R, Botto-Micca F (2003) Structural alterations of prosthetic meshes in humans. Hernia 7:29–34

    PubMed  CAS  Google Scholar 

  79. Costello CR, Bachman SL, Grant SA (2007) Characterization of heavyweight and lightweight polypropylene prosthetic mesh explants from a single patient. Surg Innov 14(3):168–176

    Article  PubMed  CAS  Google Scholar 

  80. Costello CR, Bachman SL, Grant SA (2007) Materials characterization of explanted polypropylene hernia meshes. J Biomed Mater Res Part B: Appl Biomater 83B:44–49

    Article  CAS  Google Scholar 

  81. Frostling H, Hoff A, Jacobsson S, Pfäffli P, Vainiotalo S, Zitting A (1984) Analytical, occupational and toxicologic aspects of the degradation products of polypropylene plastics. Scan J Work Environ Heal 10:163–169

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

Patel: None; Ostergard: American Medical Systems, consultant; Sternschuss: None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, H., Ostergard, D.R. & Sternschuss, G. Polypropylene mesh and the host response. Int Urogynecol J 23, 669–679 (2012). https://doi.org/10.1007/s00192-012-1718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-012-1718-y

Keywords

Navigation