Skip to main content
Log in

Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET)

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In gravity forward modelling, the concept of Rock-Equivalent Topography (RET) is often used to simplify the computation of gravity implied by rock, water, ice and other topographic masses. In the RET concept, topographic masses are compressed (approximated) into equivalent rock, allowing the use of a single constant mass–density value. Many studies acknowledge the approximate character of the RET, but few have attempted yet to quantify and analyse the approximation errors in detail for various gravity field functionals and heights of computation points. Here, we provide an in-depth examination of approximation errors associated with the RET compression for the topographic gravitational potential and its first- and second-order derivatives. Using the Earth2014 layered topography suite we apply Newtonian integration in the spatial domain in the variants (a) rigorous forward modelling of all mass bodies, (b) approximative modelling using RET. The differences among both variants, which reflect the RET approximation error, are formed and studied for an ensemble of 10 different gravity field functionals at three levels of altitude (on and 3 km above the Earth’s surface and at 250 km satellite height). The approximation errors are found to be largest at the Earth’s surface over RET compression areas (oceans, ice shields) and to increase for the first- and second-order derivatives. Relative errors, computed here as ratio between the range of differences between both variants relative to the range in signal, are at the level of 0.06–0.08 % for the potential, \(\sim \)3–7 % for the first-order derivatives at the Earth’s surface (\(\sim \)0.1 % at satellite altitude). For the second-order derivatives, relative errors are below 1 % at satellite altitude, at the 10–20 % level at 3 km and reach maximum values as large as \(\sim \)20 to 110  % near the surface. As such, the RET approximation errors may be acceptable for functionals computed far away from the Earth’s surface or studies focussing on the topographic potential only. However, for derivatives of the functionals computed near the Earth’s surface, the use of RET introduces very spurious errors, in some cases as large as the signal, rendering it useless for smoothing or reducing of field observation, thus rigorous mass modelling should be used for both spatial and spectral domain methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson EG (1976) The effect of topography on solutions of Stokes’ problem. Unisurv S-14 Report, School of Surveying. University of New South Wales, Kensington

  • Arkani-Hamed J (1970) Lateral variations of density in the mantel. Geophys J Roy Astron Soc 20:431–455

    Article  Google Scholar 

  • Audet P (2014) Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography. Phys Earth Planet Inter 226:48–82

    Article  Google Scholar 

  • Bagherbandi M (2011) An isostatic earth crustal model and its applications. Ph.D. thesis, Royal Institute of Technology (KTH) Division of Geodesy and Geoinformatics, p 224

  • Balmino G, Lambeck K, Kaula WM (1973) A spherical harmonic analysis of the Earth’s Topography. J Geophys Res 78(2):478–481

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86(7):499–520

    Article  Google Scholar 

  • Baran I, Kuhn M, Claessens SJ, Featherstone WE, Holmes S, Vaniček P (2006) A synthetic Earth gravity model designed specifically for testing reginal gravimetric geoid determination algorithms. J Geodesy 80:1–16

    Article  Google Scholar 

  • Blakeley RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Čadek O, Matyska C (1990) Three-dimensional modelling convection in the Earth’s mantle: influence of the core mantle boundary. Stud Geophys Geod 34:278–283

    Article  Google Scholar 

  • Čadek O, Matyska C (1991) Mass heterogeneities and convection in the Earth’s mantle inferred from gravity and core-mantle boundary irregularities. Pure Appl Geophys 135(1):107–123

    Article  Google Scholar 

  • Chambat F, Valette FG (2005) Earth gravity up to second order in topography and density. Phys Earth Planet Inter 151:89–106

    Article  Google Scholar 

  • Claessens SJ (2003) A synthetic earth model: analysis, implementation, validation and application. DUP Science, Delft, The Netherlands

    Google Scholar 

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J Geophys Res 118(2):5991–6002

    Article  Google Scholar 

  • Deng X-L, Grombein T, Shen W-B, Heck B, Seitz K (2016) Corrections to “A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling” (Heck and Seitz, 2007) and “Optimized formulas for the gravitational field of a tesseroid” (Grombein et al., 2013) J Geodesy 90(6):585–587

  • Douch K, Panet I, Pajot-Métivier G, Christophe B, Foulon B, Lequentrec-Lalancette M-F, Diament M (2015) Error analysis of a new planar electrostatic gravity gradiometer for airborne surveys. J Geodesy 89(12):1217–1231

    Article  Google Scholar 

  • Eshagh M (2009a) Comparison of two approaches for considering laterally varying density in topographic effect on satellite gravity gradiometric data. Acta Geophys 58(4):661–686

    Google Scholar 

  • Eshagh M (2009b) Contribution of 1\(^{\text{ st }}\) - 3\(^{\text{ rd }}\) order terms of a binomial expansion of topographic heights in topographic and atmospheric effects on satellite gravity gradiometric data. Artif Satell 44(1):21–31

    Article  Google Scholar 

  • Fellner JJ, Kuhn M, Featherstone WE (2012) Development of a Synthetic Earth Gravity Model by 3D mass optimisation based on forward modelling. Earth Planets Space 64:5–12

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying. Ohio State University, Columbus

  • Forsberg R, Jensen T (2015) New geoid of Greenland: a case study of terrain and ice effects, GOCE and use of local sea level data. International Association of Geodesy Symposia. doi:10.1007/1345_2015_50

  • Göttl F, Rummel R (2009) Geodetic view on isostatic models. Pure Appl Geophys 166:1247–1260

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2010) Modelling topographic effects in GOCE gravity gradients. GEOTECHNOLOGIEN Sci Rep 17:84–93

    Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87:645–660

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2014a) Topographic-isostatic reduction of GOCE gravity gradients. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, Proceedings of the IAG General Assembly, Melbourne, Australia, 2011, IAG Symposia, vol. 139. Springer, New York, pp 349–356

  • Grombein T, Luo X, Seitz K, Heck B (2014b) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys 25:959–982

    Article  Google Scholar 

  • Grüninger W (1990) Zur topographisch-isostatischen Reduktion der Schwere. Ph.D. Thesis, Universität Karlsruhe

  • Haagmans R (2000) A synthetic Earth for use in geodesy. J Geodesy 74:503–511

    Article  Google Scholar 

  • Heck B, Wild F (2005) Topographic-isostatic reductions in satellite gravity gradiometry based on a generalized condensation model. In: Sansò F (ed) A window on the future of geodesy, IAG Symposia, vol 128. Springer, Berlin, pp 294–299

    Chapter  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81(2):121–136

    Article  Google Scholar 

  • Hirt C, Kuhn M (2012) Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J Geophys Res 117:B12407

    Google Scholar 

  • Hirt C (2013) RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar Geodesy 36(2):1–20

    Article  Google Scholar 

  • Hirt C, Claessens SJ, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of the Earth’s gravity field. Geophys Res Lett 40:4279–4283

    Article  Google Scholar 

  • Hirt C (2014) GOCE’s view below the ice of Antarctica: satellite gravimetry confirms improvements in Bedmap2 bedrock knowledge. Geophys Res Lett 41:5021–5028

    Article  Google Scholar 

  • Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: Gravity forward modeling in the spectral and spatial domains revisited. J Geophys Res 119(4):3646–3661

    Article  Google Scholar 

  • Hirt C, Kuhn M, Claessens SJ, Pail R, Seitz K, Gruber T (2014) Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Comput Geosci 73:71–80

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-minute shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinf 39:103–112

    Article  Google Scholar 

  • Hirt C, Rexer M, Claessens SJ (2015) Topographic evaluation of fifth-generation GOCE gravity field models—globally and regionally. Newton Bull 5:163–186

    Google Scholar 

  • Hirt C, Rexer M, Scheinert M, Pail R, Claessens SJ, Holmes S (2016) A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data. J Geodesy 90(2):105–127

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz M (2005) Physical Geodesy. Springer, Wien, New York

    Google Scholar 

  • Jekeli C (1983) A numerical study of the divergence of spherical harmonic series of the gravity and height anomalies at the Earth’s surface. Bull Géodésique 57:10–28

    Article  Google Scholar 

  • Kalberg T, Gohl K, Eagles E, Spiegel C (2015) Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling. Mar Geophys Res 36:263–279

    Article  Google Scholar 

  • Kirby JF, Swain CJ (2008) An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochem Geophys Geosyst 9(3):Q03022

    Article  Google Scholar 

  • Kuhn M (2000) Geoidbestimmung unter Verwendung verschiedener Dichtehypothesen. Reihe C, Heft Nr. 520. Deutsche Geodätische Kommission. München

  • Kuhn M (2003) Geoid determination with density hypotheses from isostatic models and geological information. J Geododesy 77(1–2):50–65

    Article  Google Scholar 

  • Kuhn M, Featherstone WE (2003) On the construction of a synthetic earth gravity model. In: Tziavos I (ed) Proceed 3rd Meeting of the Intern. Gravity and Geoid Commission. Editions Ziti, pp 189–194

  • Kuhn M, Featherstone WE (2005a) Construction of a synthetic Earth gravity model by forward gravity modelling. In Sanso F (ed) A Window on the Future of Geodesy, IAG Symposia, vol. 128, pp 350–355

  • Kuhn M, Seitz K(2005) Comparison of Newton’s Integral in the Space and Frequency Domains. In: Sanso F (ed) A Window on the Future of Geodesy. IAG Symposia, vol. 128, pp 386–391

  • Kuhn M, Featherstone WE, Kirby JF (2009) Complete spherical Bouguer gravity anomalies over Australia. Aust J Earth Sci 56:213–223

    Article  Google Scholar 

  • Lambeck K (1976) Lateral density anomalies in the upper mantle. J Geophys Res 81(35):6333–6340

    Article  Google Scholar 

  • Lambeck K (1979) Methods and geophysical applications of satellite geodesy. Rep Prog Phys 42:547–628

    Article  Google Scholar 

  • Lee WHK, Kaula WM (1967) A spherical harmonic analysis of the Earth’s topography. J Geophys Res 72(2):753–758

    Article  Google Scholar 

  • Llubes M, Florsch N, Legresy B, Lemoine JM, Loyer S, Crossley D, Remy F (2003) Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet Sci Lett 212:103–117

    Article  Google Scholar 

  • Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Sonderheft 11 der Österreichischen Zeitschrift für Vermessungswesen. Österreichischer Verein für Vermessungswesen, Wien

  • Makhloof AAE, Ilk KH (2008a) Effects of topographic-isostatic masses on gravitational functionals at the Earth’s surface and at airborne and satellite altitudes. J Geodesy 82:93–111

    Article  Google Scholar 

  • Makhloof AAE, Ilk KH (2008b) Far-zone effects for different topographic-compensation models on a spherical harmonic expansion of the topography. J Geodesy 82:613–635

    Article  Google Scholar 

  • Matyska C (1989) The Earth’s gravity field and constraints to its density distribution. Stud Geophys Geod 33:1–10

    Article  Google Scholar 

  • McKenzie D (2010) The influence of dynamically supported topography on estimates of Te. Earth Planet Sci Lett 295:127–138

    Article  Google Scholar 

  • McKenzie D, Yi W, Rummel R (2015) Estimates of Te for continental regions using GOCE gravity. Earth Planet Sci Lett 428:97–107

    Article  Google Scholar 

  • Moritz H, Hofmann-Wellenhof B (1993) Geometry, Relativity, Geodesy, Wichman, Karlsruhe, p 367

  • Motao H (1995) Marine gravity surveying line system adjustment. J Geodesy 70:158–165

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74(7):552–560 [Erratum in: J Geodesy 76(8):475]

  • Pavlis NK, Rapp RH (1990) The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling. Geophys J Int 100:369–378

    Article  Google Scholar 

  • Petrov O, Morozov A, Shokalsky S, Kashubin S, Artemieva IM, Sobolev N, Petrov E, Ernst RE, Sergeev S, Smelror M (2016) Crustal structure and tectonic model of the Arctic region. Earth Sci Rev 154:29–71

    Article  Google Scholar 

  • Rapp RH (1982) Degree variances of the Earth’s potential, topography and its isostatic compensation. Bull Géodésique 56(2):84–94

    Article  Google Scholar 

  • Rapp RH (1989) The decay of the spectrum of the gravitational potential and the topography for the Earth. Geophys J Int 99:449–455

    Article  Google Scholar 

  • Rexer M, Hirt C (2015) Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. J Geodesy 89:887–909

    Article  Google Scholar 

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. Report No 388, Dep. Geodetic Sci. Surv., Ohio State University. Columbus, Ohio

  • Rummel R, Yi W, Stumer C (2011) GOCE gravitational gradiometry. J Geodesy 85(11):777–790

    Article  Google Scholar 

  • Sleep NH, Fujita K (1997) Principles of geophysics. Blackwell Sciences, Massachusetts 586 pp

    Google Scholar 

  • Stark CP, Stewart J, Ebinger CJ (2003) Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics. J Geophys Res 108(B12):2558

    Article  Google Scholar 

  • Sünkel H (1985) An isostatic Earth model. Report No 368, Dep. Geodetic Sci. Surv., Ohio State University. Columbus, Ohio

  • Tenzer R, Abdalla A, Vajda P (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geod 40(3):207–223

  • Tenzer R, Hirt C, Novák P, Pitonák M, Šprlák M (2016) Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation. J Geodesy 90(1):65–80

    Article  Google Scholar 

  • Tsoulis D (1999) Spherical harmonic computations with topographic/isostatic coefficients. IAPG/FESG Report No. 3, Institut fur Astronomische und Physikalische Geodäsie, Universität München, Germany

  • Tsoulis D (2001) Terrain correction computations for a densely sampled DTM in the Bavarian Alps. J Geodesy 75:291–307

    Article  Google Scholar 

  • Tsoulis D, Kuhn M (2007) Recent developments in synthetic Earth gravity models in view of the availability of digital terrain and crustal databases of global coverage and increased resolution. In: Kiliçoglu A, Forsberg R (eds) Gravity field of the Earth, Proceedings of the 1st International Symposium of the International Gravity Field Service. Harita Dergisi, Istanbul, pp 354–359

    Google Scholar 

  • Tsoulis D, Patlakis K (2013) A spectral review of current satellite-only and combined Earth gravity models. Rev Geophys 51:186–243

    Article  Google Scholar 

  • Tziavos IN, Sideris MG (2013) Topographic reductions in gravity and geoid modeling. In: Sansò F, Sideris MG (eds) Geoid determination. Lecture notes in earth system sciences, vol 110. Springer, Berlin, Heidelberg

    Google Scholar 

  • van Hees GLS (2000) Some elementary relations between mass distributions inside the Earth and the geoid and gravity field. J Geodyn 29:111–123

    Article  Google Scholar 

  • Völgyesi L (2001) Geodetic application of torsion balance measurements in Hungary. Rep Geodesy Warsaw Univ Technol 57(2):524–531

    Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82:637–653

    Article  Google Scholar 

  • Wieczorek MA (2015) Gravity and topography of the terrestrial planets. In: Schubert G (ed) Treatise on geophysics, 2nd edn., pp 153–193

  • Wild F, Heck B (2005) A comparison of different isostatic models applied to satellite gravity gradiometry. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG Symposia, vol 129. Springer, Berlin, pp 230–235

    Chapter  Google Scholar 

  • Zhang Y (2005) Global tectonic and climatic control of mean elevation of continents, and Phanerozoic sea level change. Earth Planet Sci Lett 237:524–531

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof Mehdi Eshagh and two anonymous reviewers for their thorough reviews. We thank for access to the Pawsey Supercomputing Centre (http://www.pawsey.org.au) through the merit allocation scheme used for the calculations presented in this work. Christian Hirt thanks the German National Research Foundation for support via Grant Hi 1760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kuhn.

Appendix

Appendix

To analytically prove that the RET concept formulated in Sect. 2.2 holds for both masses above and below MSL we first show the derivation for ocean water masses located exclusively below MSL and then for ice masses that can be located partly above and partly below MSL (cf. Fig. 11). With respect to an upper crust with the mean density \(\rho _{0}\), the ocean water masses are considered as mass deficiencies with the density difference \(\Delta \rho _{\mathrm{OCN}}=\rho _{0} - \rho _{\mathrm{OCN}}\) where \(\rho _{\mathrm{OCN}}\) is the density of ocean water. In this case, mass equivalence between anomalous ocean water masses and compressed RET masses is expressed by the condition (cf. Eq. 3)

$$\begin{aligned} \rho _0 \left[ {R_{\mathrm{up}}^3 -( {R_{\mathrm{low}} +\Delta H_c })^3} \right] =\Delta \rho _{\mathrm{OCN}} \left[ {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 } \right] \end{aligned}$$
(9)

which can be re-arranged to

$$\begin{aligned} \rho _0 \left[ {( {R_{\mathrm{low}} +\Delta H_c })^3-R_{\mathrm{low}}^3 } \right] =\rho _{\mathrm{OCN}} \left[ {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 } \right] \end{aligned}$$
(10)

by introducing \(\Delta \rho _{\mathrm{OCN}}=\rho _{0} - \rho _{\mathrm{OCN}}\). Solving Eq. 10 for \(\Delta H_c \), measured above the bedrock, results into

$$\begin{aligned} \Delta H_c =\root 3 \of {\frac{\rho _{\mathrm{OCN}} }{\rho _0 }\left( {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 }\right) +R_{\mathrm{low}}^3 }-R_{\mathrm{low}}, \end{aligned}$$
(11)

which is identical to the general formula derived in Sect.  2.2 for the general RET concept (cf. Eq. 4).

Fig. 11
figure 11

RET principle in spherical approximation for ocean water masses (left) and ice masses (right)

When considering ice masses, in general, we are dealing with anomalous masses above and below MSL with the respective mass densities \(\rho _{\mathrm{ICE}}\) and \(\Delta \rho _{\mathrm{ICE}}=\rho _{0} - \rho _{\mathrm{ICE}}\) (cf. Fig. 11). As mass anomalies above and below MSL represent mass excess (positive) and deficiency (negative), respectively, the height \(H_{\mathrm{RET}}\) describing the RET masses (cf. Fig. 11) is obtained by the mass equivalence between the difference in anomalous ice masses above and below MSL and compressed RET masses expressed by the condition

$$\begin{aligned} \rho _0 \left[ {( {R+H_{\mathrm{RET}} })^3-R^3} \right]= & {} \rho _{\mathrm{ICE}} \left[ {R_{\mathrm{up}}^3 -R^3} \right] \nonumber \\&-\Delta \rho _{\mathrm{ICE}} \left[ {R^3-R_{\mathrm{low}}^3 }\right] \end{aligned}$$
(12)

which can be re-arranged to

$$\begin{aligned} \rho _0 \left[ {( {R+H_{\mathrm{RET}} })^3-R_{\mathrm{low}}^3 } \right] =\rho _{\mathrm{ICE}} \left[ {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 } \right] \end{aligned}$$
(13)

by introducing \(\Delta \rho _{\mathrm{ICE}}=\rho _{0} - \rho _{\mathrm{ICE}}\). Solving Eq. 13 for \(H_{\mathrm{RET}}\), measured above/below MSL, results in

$$\begin{aligned} H_{\mathrm{RET}} =\root 3 \of {\frac{\rho _{\mathrm{ICE}} }{\rho _0 }\left( {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 }\right) +R_{\mathrm{low}}^3 }-R. \end{aligned}$$
(14)

Based on \(H_{\mathrm{RET}}\), the height of all compressed masses (above and below MSL) \(\Delta H_c \) measured above the bedrock is obtained by

$$\begin{aligned} \Delta H_c= & {} H_{\mathrm{RET}} -H_{\mathrm{low}} \nonumber \\= & {} \root 3 \of {\frac{\rho _{\mathrm{ICE}} }{\rho _0 }\left( {R_{\mathrm{up}}^3 -R_{\mathrm{low}}^3 }\right) +R_{\mathrm{low}}^3 }-R_{\mathrm{low}}, \end{aligned}$$
(15)

which again is identical to the general formula given by Eq. (4). Similarly, the RET height can be obtained for lake water masses, which also can be located above and below MSL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, M., Hirt, C. Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET). J Geod 90, 883–902 (2016). https://doi.org/10.1007/s00190-016-0917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0917-6

Keywords

Navigation