Skip to main content
Log in

Timing group delay and differential code bias corrections for BeiDou positioning

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This article first clearly figures out the relationship between parameters of timing group delay (TGD) and differential code bias (DCB) for BDS, and demonstrates the equivalence of TGD and DCB correction models combining theory with practice. The TGD/DCB correction models have been extended to various occasions for BDS positioning, and such models have been evaluated by real triple-frequency datasets. To test the effectiveness of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both standard point positioning (SPP) and precise point positioning (PPP) tests are carried out for BDS signals with different schemes. Furthermore, the influence of differential code biases on BDS positioning estimates such as coordinates, receiver clock biases, tropospheric delays and carrier phase ambiguities is investigated comprehensively. Comparative analysis show that the unmodeled differential code biases degrade the performance of BDS SPP by a factor of two or more, whereas the estimates of PPP are subject to varying degrees of influences. For SPP, the accuracy of dual-frequency combinations is slightly worse than that of single-frequency, and they are much more sensitive to the differential code biases, particularly for the B2B3 combination. For PPP, the uncorrected differential code biases are mostly absorbed into the receiver clock bias and carrier phase ambiguities and thus resulting in a much longer convergence time. Even though the influence of the differential code biases could be mitigated over time and comparable positioning accuracy could be achieved after convergence, it is suggested to properly handle with the differential code biases since it is vital for PPP convergence and integer ambiguity resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Abdel-salam M (2005) Precise point positioning using un-differenced code and carrier phase observations. Dissertation, University of Calgary, Canada. UCGE reports no. 20229

  • CSNO (2012) BeiDou navigation satellite system signal in space interface control document-open service signal B1I, version 1.0. China Satellite Navigation Office, Dec 2012

  • CSNO (2013) BeiDou navigation satellite system signal in space interface control document-open service signal, version 2.0. China Satellite Navigation Office, Dec 2013

  • Dach R, Montenbruck O, Prange L (2014) Status of the IGS-MGEX project. In: Proceedings of EUREF 2014 symposium, Vilnius, Lithuania, 3–7 June

  • Deng Z, Zhao Q, Springer T, Prange L, Uhlemann M (2014) Orbit and clock determination-BeiDou. In: Proceedings of IGS workshop, Pasadena, USA, 23–27 June

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(7):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Feltens J, Schaer S (1998) IGS products for the ionosphere, IGS positioning paper. In: Proceedings of the IGS analysis centers workshop, Darmstadt, Germany, 9–11 Feb

  • Gao Y (2008) GNSS biases, their effect and calibration. In: Proceedings of IGS workshop, Miami Beach, USA, 2–6 June

  • He L, Ge M, Wang J, Wickert J, Schuh H (2013) Experimental study on the precise orbit determination of the BeiDou navigation satellite system. Sensors 13(3):2911–2928. doi:10.3390/s130302911

    Article  Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Kouba J, Hérous P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28. doi:10.1007/PL00012883

    Article  Google Scholar 

  • Li M, Qu L, Zhao Q, Guo J, Su X, Li X (2014) Precise point positioning with the BeiDou navigation satellite system. Sensors 14(1):927–943. doi:10.3390/s140100927

    Article  Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076. doi:10.1007/s00190-012-0565-4

    Article  Google Scholar 

  • Liu J, Bi S, Zheng J, Xie J (2014) Effect of separation of navigation satellite antenna inter-frequency phase centers on TGD parameter. In: China satellite navigation conference (CSNC) 2014 Proceedings. Lecture notes in electrical engineering, vols II, 304, pp 227–238. doi:10.1007/978-3-642-54743-0_20

  • Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4:4692. doi:10.1038/srep04692

    Google Scholar 

  • Montenbruck O, Steigenberger P (2013) The BeiDou navigation message. J Glob Position Syst 12(1):1–12. doi:10.5081/jgps.12.1.1

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Hauschild A (2014) Differential code bias estimation using multi-gnss observations and global ionosphere maps. In: Proceedings of ION ITM 2014, San Diego, USA, 26–28 Jan

  • Petit G, Luzum B (2010) IERS Conventions 2010 (IERS Technical Note No. 36). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, p 179. ISBN:3-89888-989-6.

  • Rao GS (2007) GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modeling. J Earth Syst Sci 116:407–411. doi:10.1007/s12040-007-0039-x

    Article  Google Scholar 

  • Ray J (2001) Updated P1–C1 biases and cc2noncc. IGS Mail No. 3220, 5 March

  • Rizos C, Montenbruck O, Weber R, Neilan R, Hugentobler U (2013) The IGS MGEX Experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of ION-PNT-2013, Honolulu, USA, 22–25 April

  • Schaer S (2003) IGS GLONASS tracking data. IGS Mail No. 4371, 8 May.

  • Schaer S (2008) Differential code biases (DCB) in GNSS analysis. In: Proceedings of IGS workshop, Miami Beach, USA, 2–6 June

  • Schaer S (2012) Overview of relevant GNSS biases. In: Proceedings of IGS workshop on GNSS biases. University of Bern, Switzerland, 18–19 Jan

  • Schaer S, Steigenberger P (2006) Determination and use of GPS differential code biases values. In: Proceedings of IGS workshop, Darmstadt, Germany, 8–11 May

  • Shi C, Zhao Q, Hu Z, Liu J (2013) Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut 17(1):103–119. doi:10.1007/s10291-012-0264-x

    Article  Google Scholar 

  • Tetewsky A, Ross J, Soltz A, Vaughn N, Anzperger J, O’Brien C, Graham D, Craig D and Lozow J (2009) Making sense of inter-signal corrections-accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms. InsideGNSS:37–48, July/August

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phases. Man Geod 18:91–98

    Google Scholar 

  • Wu X, Hu X, Wang G, Zhong H, Tang C (2013) Evaluation of COMPASS ionospheric model in GNSS positioning. Adv Space Res 51(6):959–968. doi:10.1016/j.asr.2012.09.039

    Article  Google Scholar 

  • Yang YX, Li JL, Wang AB, Xu JY, He HB, Guo HR, Shen JF, Dai X (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci 57(1):144–152. doi:10.1007/s11430-013-4769-0

  • Zhang X, Liu J, Forsberg R (2006) Application of precise point positioning in airborne survey. Geomat Inform Sci Wuhan Univ 31(1):19–22 (in Chinese)

  • Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486. doi:10.1007/s00190-013-0622-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge IGS Multi-GNSS Experiment (MGEX) for providing GNSS data and products. We also appreciate the editor-in-chief, Roland Klees, the handling editor, Pascal Willis, and three anonymous reviewers for their valuable comments and improvements to this manuscript. This study was supported by the National Natural Science Foundation of China (No: 41474025, No: 41404006) and International Postdoctoral Exchange Fellowship Program 2013 by the Office of China Postdoctoral Council (No. 2013042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhang, X. & Wang, J. Timing group delay and differential code bias corrections for BeiDou positioning. J Geod 89, 427–445 (2015). https://doi.org/10.1007/s00190-015-0788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0788-2

Keywords

Navigation