Skip to main content
Log in

Review of magnetorheological finishing on components with complex surfaces

  • Application
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Precision complex surfaces components are in high demand for optical imaging, high-power lasers, and medical implants. Magnetorheological finishing (MRF) is widely used in ultra-precision machining of complex surfaces components due to its advantages of low processing cost, high precision, stable removal function, no surface damage, and the ability to achieve nano-scale surface roughness and micro-scale surface shape accuracy. However, the removal efficiency of MRF is still low, the material removal mechanism is not completely clear, and the properties of magnetorheological fluid (MR fluid) need to be improved, so its application in industrial production is limited. In order to further promote the development of MRF and break through the difficulties of current MRF, it is necessary to review and summarize the MRF technology. Recent studies progress on MRF need to be more comprehensive. It is not comprehensive to introduce only several different removal theories and the appearance of compound MRF. Research progress like MR fluid, MRF tools or other also should be mentioned in a short sentence. This paper gives a detailed literature review on MRF for complex surfaces. Firstly, the principle of MRF is introduced. The finishing tools are classified based on shape and the workpieces suitable for each tool are analyzed. Some new compound MRF techniques with high machining efficiency are introduced. Then, the researches on MRF influence function and force were reviewed, and the researches on three factors affecting MRF machining performance, including process parameters, MR fluid, and magnetic pole arrangement, were reviewed. Finally, the key works of MRF technology in the future are prospected: material removal theory, preparation of high performance MR fluid, and development of novel composite MRF based on interdisciplinary and universal optimization of MRF machine tools. This paper has important reference value for researchers in MRF-related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178. https://doi.org/10.1016/j.precisioneng.2015.04.014

    Article  Google Scholar 

  2. Iqbal F, Jha S (2019) Experimental investigations into transient roughness reduction in ball-end magneto-rheological finishing process. Mater Manuf Process 34:224–231. https://doi.org/10.1080/10426914.2018.1512131

    Article  CAS  Google Scholar 

  3. Wang D, Hu H, Li L, Bai Y, Luo X et al (2017) Effects of the gap slope on the distribution of removal rate in Belt-MRF. Opt Express 25:26600–26614. https://doi.org/10.1364/OE.25.026600

    Article  PubMed  Google Scholar 

  4. Singh S, Prakash C (2020) Effect of cryogenic treatment on the microstructure, mechanical properties and finishability of beta-TNTZ alloy for orthopedic applications. Mater Lett 278. https://doi.org/10.1016/j.matlet.2020.128461

  5. Yin S, Deng Z, Guo Y, Liu J, Huang S et al (2020) Magnetorheological polishing using large polishing tool excited by electromagnetic field for silicon carbide wafer. Surf Technol 49:309–315. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.036

    Article  CAS  Google Scholar 

  6. Fu Y, Lu J, Yan Q, Xie D (2020) Basic principle and mechanical property of magnetorheological hydrodynamic compound polishing. Surf Technol 49:55–63. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.04.007 (in Chinese)

    Article  CAS  Google Scholar 

  7. Karthikeyan S, Mohan B, Kathiresan S (2021) Influence of rotational magnetorheological abrasive flow finishing process on biocompatibility of stainless steel 316L. J Mater Eng Perform 30:1545–1553. https://doi.org/10.1007/s11665-020-05442-0

    Article  CAS  Google Scholar 

  8. Rajput AS, Singh A, Kapil S, Das M (2022) Investigations on the trochoidal toolpath for processing the biomaterial through magnetorheological fluid assisted finishing process. J Manuf Process 76:812–827. https://doi.org/10.1016/j.jmapro.2022.02.055

    Article  Google Scholar 

  9. Hou J, Chen XH, Liu SW, Zheng N, Zhong B, Deng WH (2020) Effects of magnetorheological processing parameters on the mid-spatial frequency errors of optics. Second Target Recog Artif Intel Summit Forum 11427. https://doi.org/10.1117/12.2552472

  10. Barman A, Das M (2019) Toolpath generation and finishing of bio-titanium alloy using novel polishing tool in MFAF process. Int J Adv Manuf Tech 100:1123–1135. https://doi.org/10.1007/s00170-017-1050-2

    Article  Google Scholar 

  11. Nagdeve L, Jain VK, Ramkumar J (2019) Preliminary investigations into nano-finishing of freeform surface (femoral) using inverse replica fixture. Int J Adv Manuf Tech 100:1081–1092. https://doi.org/10.1007/s00170-017-1459-7

    Article  Google Scholar 

  12. Golini DON, Schneider G, Flug P, DeMarco M (2001) The ultimate flexible optics manufacturing technology: magnetorheological finishing. Opt Photon News 12:20–24. https://doi.org/10.1364/OPN.12.10.000020

    Article  Google Scholar 

  13. Bedi TS, Kant R (2021) Comparative performance of magnetorheological external finishing tools using different magnetic structures. Mater Today-Proc 41:908–914. https://doi.org/10.1016/j.matpr.2020.09.485

    Article  Google Scholar 

  14. Yang C, Li FK, Ren T, Wei YS, Bai Y (2020) Fast and high quality composite processing method for silicon carbide wafers. Acta Opt Sin 40. https://doi.org/10.3788/Aos202040.1322001 (in Chinese)

  15. Nagdeve L, Jain VK, Ramkumar J (2018) Differential finishing of freeform surfaces (knee joint) using R-MRAFF process and negative replica of workpiece as a fixture. Mach Sci Technol 22:671–695. https://doi.org/10.1080/10910344.2017.1402929

    Article  Google Scholar 

  16. Ahmad S, Singari RM, Mishra RS (2020) Modelling and optimisation of magnetic abrasive finishing process based on a non-orthogonal array with ANN-GA approach. Transactions of the IMF 98:186–198. https://doi.org/10.1080/00202967.2020.1776966

    Article  CAS  Google Scholar 

  17. Luo H, Guo M, Yin S, Chen F, Huang S et al (2018) An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl Surf Sci 444:569–577. https://doi.org/10.1016/j.apsusc.2018.03.091

    Article  CAS  Google Scholar 

  18. Sadiq A, Shunmugam MS (2009) Investigation into magnetorheological abrasive honing (MRAH). Int J Mach Tool Manu 49:554–560. https://doi.org/10.1016/j.ijmachtools.2009.02.009

    Article  Google Scholar 

  19. Kim BC, Chung JH, Cho MW, Ha SJ, Yoon GS (2018) Magnetorheological fluid polishing using an electromagnet with straight pole-piece for improving material removal rate. J Mech Sci Technol 32:3345–3350. https://doi.org/10.1007/s12206-018-0637-3

    Article  Google Scholar 

  20. Steven RA, Irina AK, Leslie LG, Aril BS, Henry JR et al (1999) Details of the polishing spot in magnetorheological finishing (MRF). Optic Manuf Test III 3782:92–100. https://doi.org/10.1117/12.369175

    Article  Google Scholar 

  21. Zhang HQ, Dai YF, Lai T (2021) Highly accurate digital processing of large stroke guideway with an optical material-corning code 7972. Materials 14. https://doi.org/10.3390/ma14143809

  22. Zhang ZY, Shi ZF, Du YF, Yu ZJ, Guo LC, Guo DM (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415. https://doi.org/10.1016/j.apsusc.2017.08.064

    Article  CAS  Google Scholar 

  23. Zhang ZY, Wang X, Meng FN, Liu DD, Huang SL et al (2022) Origin and evolution of a crack in silicon induced by a single grain grinding. J Manuf Process 75:617–626. https://doi.org/10.1016/j.jmapro.2022.01.037

    Article  Google Scholar 

  24. Zhang ZY, Cui JF, Zhang JB, Liu DD, Yu ZJ, Guo DM (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11. https://doi.org/10.1016/j.apsusc.2018.10.133

    Article  CAS  Google Scholar 

  25. Zhang ZY, Liu J, Hu W, Zhang LZ, Xie WX, Liao LX (2021) Chemical mechanical polishing for sapphire wafers using a developed slurry. J Manuf Process 62:762–771. https://doi.org/10.1016/j.jmapro.2021.01.004

    Article  Google Scholar 

  26. Zhang ZY, Liao LX, Wang XZ, Xie WX, Guo DM (2020) Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Appl Surf Sci 506:144670. https://doi.org/10.1016/j.apsusc.2019.144670

    Article  CAS  Google Scholar 

  27. Liao LX, Zhang ZY, Meng FN, Liu DD, Wu B et al (2021) A novel slurry for chemical mechanical polishing of single crystal diamond. Appl Surf Sci 564:150431. https://doi.org/10.1016/j.apsusc.2021.150431

    Article  CAS  Google Scholar 

  28. Xie WX, Zhang ZY, Liao LX, Liu J, Su HJ et al (2020) Green chemical mechanical polishing of sapphire wafers using a novel slurry. Nanoscale 12:22518–22526. https://doi.org/10.1039/d0nr04705h

    Article  CAS  PubMed  Google Scholar 

  29. Wang YQ, Yin SH, Huang H, Chen FJ, Deng GJ (2015) Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization. Precis Eng 40:309–317. https://doi.org/10.1016/j.precisioneng.2014.11.001

    Article  Google Scholar 

  30. Wan SL, Wei CY, Hu C, Situ GH, Shao YC, Shao JD (2021) Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing. Int J Mach Tool Manu 161. https://doi.org/10.1016/j.ijmachtools.2020.103673

  31. Khatri N, Mishra V, Sharma R, Garg H, Karar V (2017) Improving the surface finish of diamond turned silicon with magneto-rheological finishing. Mater Today: Proc 4:10158–10162. https://doi.org/10.1016/j.matpr.2017.06.340

    Article  Google Scholar 

  32. Shi F, Qi X, Dong W, Zhu ZW (2018) Improvement of surface laser damage resistance of KDP crystal under combined machining process. Optic Eng 57. https://doi.org/10.1117/1.Oe.57.12.121911

  33. Jain VK (2009) Magnetic field assisted abrasive based micro-/nano-finishing. J Mater Process Tech 209:6022–6038. https://doi.org/10.1016/j.jmatprotec.2009.08.015

    Article  CAS  Google Scholar 

  34. Peng WQ, Li SY, Guan CL, Li Y, Hu XD (2018) Ultra-precision optical surface fabricated by hydrodynamic effect polishing combined with magnetorheological finishing. Optik 156:374–383. https://doi.org/10.1016/j.ijleo.2017.11.055

    Article  CAS  Google Scholar 

  35. Baghel PK, Gavel KS, Khan GS, Kumar R (2022) Line contact ring magnetorheological finishing process for precision polishing of optics. Appl Optic 61:2582–2590. https://doi.org/10.1364/Ao.450569

    Article  CAS  Google Scholar 

  36. Catrin R, Neauport J, Taroux D, Cormont P, Maunier C, Lambert S (2014) Magnetorheological finishing for removing surface and subsurface defects of fused silica optics. Opt Eng 53:092010. https://doi.org/10.1117/1.Oe.53.9.092010

    Article  Google Scholar 

  37. Song C, Dai Y, Peng X, Wang Y, Su Y (2013) Machining model of position-attitude in magnetorheological finishing (MRF) of high-precision off-axis aspheric optical elements. Int J Precis Eng Manufac 14:1455–1463. https://doi.org/10.1007/s12541-013-0196-6

    Article  Google Scholar 

  38. Zhang YF, Fang FZ, Wang LL, Li XY, Liu JB et al (2021) Effects of functional alkali in magnetorheological finishing fluid. Smart Mater Struct 30. https://doi.org/10.1088/1361-665X/abc837

  39. Supranowitz C, Jones A (2021) Magnetorheological finishing of freeform optics using a spiral toolpath. Optifab 11889. https://doi.org/10.1117/12.2602831

  40. Pan JS, Yan QS (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Tech 81:2017–2026. https://doi.org/10.1007/s00170-015-7332-7

    Article  Google Scholar 

  41. Bai Z (2015) Experimental investigations into forces acting between cluster mr effect pad and workpiece surface. Journal of. Mech Eng 51. https://doi.org/10.3901/jme.2015.15.190 (in Chinese)

  42. Hou J, Wang HX, Chen XH (2016) Magnetorheological processing for large aperture plane optical elements. Optic Precis Eng 24:3054–3060. https://doi.org/10.3788/OPE.20162412.3054 (in Chinese)

    Article  Google Scholar 

  43. Singh G, Singh AK, Garg P (2016) Development of magnetorheological finishing process for external cylindrical surfaces. Mater Manuf Process 32:581–588. https://doi.org/10.1080/10426914.2016.1221082

    Article  CAS  Google Scholar 

  44. Menapace JA, Ehrmann PE, Bayramian AJ, Bullington A, Di Nicola JMG et al (2016) Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications. Appl Optic 55:5240–5248. https://doi.org/10.1364/Ao.55.005240

    Article  CAS  Google Scholar 

  45. Wang YQ, Yin SH, Huang H (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement. Precis Eng 43:93–104. https://doi.org/10.1016/j.precisioneng.2015.06.014

    Article  Google Scholar 

  46. Das M, Jain VK, Ghoshdastidar PS (2010) Nano-finishing of stainless-steel tubes using rotational magnetorheological abrasive flow finishing process. Mach Sci Technol 14:365–389. https://doi.org/10.1080/10910344.2010.511865

    Article  CAS  Google Scholar 

  47. Chen MJ, Liu HN, Su YR, Yu B, Fang Z (2016) Design and fabrication of a novel magnetorheological finishing process for small concave surfaces using small ball-end permanent-magnet polishing head. Int J Adv Manuf Tech 83:823–834. https://doi.org/10.1007/s00170-015-7573-5

    Article  Google Scholar 

  48. Kheradmand S, Esmailian M, Fatahy A (2016) A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow. Results Phys 6:568–580. https://doi.org/10.1016/j.rinp.2016.08.014

    Article  Google Scholar 

  49. Bedi TS, Singh AK (2017) Magnetorheological finishing of ferromagnetic blind-hole type surfaces. Mater Manuf Process 33:1169–1176. https://doi.org/10.1080/10426914.2017.1328120

    Article  CAS  Google Scholar 

  50. Zheng L, Li L, Wang X, Xue D, Zhang X (2017) Coordinate-origin calibration of removal function in magnetorheological finishing. Optic Precis Eng 25:8–14. https://doi.org/10.3788/OPE.20172501.0008

    Article  Google Scholar 

  51. Alam Z, Jha S (2017) Reprint of “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process”. Wear 376-377:194–202. https://doi.org/10.1016/j.wear.2017.04.007

    Article  CAS  Google Scholar 

  52. Grover V, Singh AK (2017) Modeling of surface roughness in the magnetorheological cylindrical finishing process. Proc Inst Mech Eng Part E: J Process Mech Eng 233:104–117. https://doi.org/10.1177/0954408917746354

    Article  CAS  Google Scholar 

  53. Yang H, He JG, Huang W, Zhang YF (2017) Spot breeding method to evaluate the determinism of magnetorheological finishing. Optic Eng 56. https://doi.org/10.1117/1.Oe.56.3.035101

  54. Chen MJ, Liu HN, Cheng J, Yu B, Fang Z (2017) Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head. Appl Optic 56:5573–5582. https://doi.org/10.1364/Ao.56.005573

    Article  CAS  Google Scholar 

  55. Yang H, Cheng HB, Wu HY, Wang T (2017) Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing. Appl Optic 56:3162–3170. https://doi.org/10.1364/Ao.56.003162

    Article  CAS  Google Scholar 

  56. Peng X, Yang C, Hu H, Dai Y (2016) Measurement and algorithm for localization of aspheric lens in magnetorheological finishing. Int J Adv Manuf Technol 88:2889–2897. https://doi.org/10.1007/s00170-016-9001-x

    Article  Google Scholar 

  57. Meng N, Jianguo C, Yueming L, Jianyong L (2018) Influence of magnets’ phyllotactic arrangement in cluster magnetorheological effect finishing process. Int J Adv Manuf Technol 99:1699–1712. https://doi.org/10.1007/s00170-018-2603-8

    Article  Google Scholar 

  58. Grover V, Singh AK (2018) Modelling of surface roughness in a new magnetorheological honing process for internal finishing of cylindrical workpieces. Int J Mech Sci 144:679–695. https://doi.org/10.1016/j.ijmecsci.2018.05.058

    Article  Google Scholar 

  59. Khan DA, Jha S (2018) Synthesis of polishing fluid and novel approach for nanofinishing of copper using ball-end magnetorheological finishing process. Mater Manuf Process 33:1150–1159. https://doi.org/10.1080/10426914.2017.1328112

    Article  CAS  Google Scholar 

  60. El-Amri I, Iquebal AS, Srinivasa A, Bukkapatnam S (2018) Localized magnetic fluid finishing of freeform surfaces using electropermanent magnets and magnetic concentration. J Manuf Process 34:802–808. https://doi.org/10.1016/j.jmapro.2018.05.026

    Article  Google Scholar 

  61. Li LX, Liu ZY, Xue DL, Deng WJ, Li RG et al (2018) Rapid fabrication of a lightweight 2m reaction-bonded SiC aspherical mirror. Results Phys 10:903–912. https://doi.org/10.1016/j.rinp.2018.08.013

    Article  Google Scholar 

  62. Pan J (2018) Experimental investigations on the polishing forces characteristics of dynamic magnetic field magnetorheological effect polishing pad. Journal of. Mech Eng 54. https://doi.org/10.3901/jme.2018.06.010 (in Chinese)

  63. Guan F, Hu H, Li S, Peng X, Shi F (2018) Analysis of material removal rate and stability in lap-magnetorheological finishing. Optic Eng 57:12. https://doi.org/10.1117/1.Oe.57.5.055107

    Article  Google Scholar 

  64. Song WL, Li HL, Ma JT, Hu ZC, Shi P (2018) Experimental investigation of the magnetorheological polishing process with roller. Ind Lubr Tribol 70:1060–1065. https://doi.org/10.1108/Ilt-12-2017-0367

    Article  Google Scholar 

  65. Kansal H, Singh AK, Grover V (2018) Magnetorheological nano-finishing of diamagnetic material using permanent magnets tool. Prec Eng 51:30–39. https://doi.org/10.1016/j.precisioneng.2017.07.003

    Article  Google Scholar 

  66. Grover V, Singh AK (2018) Improved magnetorheological honing process for nanofinishing of variable cylindrical internal surfaces. Mater Manuf Process 33:1177–1187. https://doi.org/10.1080/10426914.2017.1339322

    Article  CAS  Google Scholar 

  67. Alam Z, Khan DA, Jha S (2017) A study on the effect of polishing fluid volume in ball end magnetorheological finishing process. Mater Manuf Process 33:1197–1204. https://doi.org/10.1080/10426914.2017.1364760

    Article  CAS  Google Scholar 

  68. Anupama AV, Kumaran V, Sahoo B (2018) Magneto-mechanical response of additive-free Fe-based magnetorheological fluids: role of particle shape and magnetic properties. Mater Res Express 5:085703. https://doi.org/10.1088/2053-1591/aaabcc

    Article  CAS  Google Scholar 

  69. Barman A, Das M (2018) Nano-finishing of bio-titanium alloy to generate different surface morphologies by changing magnetorheological polishing fluid compositions. Precis Eng 51:145–152. https://doi.org/10.1016/j.precisioneng.2017.08.003

    Article  Google Scholar 

  70. Luo H, Yin SH, Zhang GH, Tang QC, Gen JX, Huang S (2018) Study of superhydrophobic surface in self-cleaning of magnetorheological fluid. J Mater Sci 53:1769–1780. https://doi.org/10.1007/s10853-017-1613-5

    Article  CAS  Google Scholar 

  71. Levin ML, Khudolei AL (2018) Heat transfer in the course of magnetorheological polishing. J Eng Phys Thermoph+ 91:797–805. https://doi.org/10.1007/s10891-018-1802-3

    Article  Google Scholar 

  72. Nie M, Cao J, Li J, Fu M (2019) Magnet arrangements in a magnetic field generator for magnetorheological finishing. Int J Mech Sci 161:105018. https://doi.org/10.1016/j.ijmecsci.2019.105018

    Article  Google Scholar 

  73. Kumar A, Alam Z, Khan DA, Jha S (2019) Nanofinishing of FDM-fabricated components using ball end magnetorheological finishing process. Mater Manuf Process 34:232–242. https://doi.org/10.1080/10426914.2018.1512136

    Article  CAS  Google Scholar 

  74. Parameswari G, Jain VK, Ramkumar J, Nagdeve L (2019) Experimental investigations into nanofinishing of Ti6Al4V flat disc using magnetorheological finishing process. Int J Adv Manuf Tech 100:1055–1065. https://doi.org/10.1007/s00170-017-1191-3

    Article  Google Scholar 

  75. Singh M, Singh AK (2019) Improved magnetorheological finishing process with rectangular core tip for external cylindrical surfaces. Mater Manuf Process 34:1049–1061. https://doi.org/10.1080/10426914.2019.1594272

    Article  CAS  Google Scholar 

  76. Pan JS, Guo ML, Yan QS, Zheng K, Xiao XL (2019) Research on material removal model and processing parameters of cluster magnetorheological finishing with dynamic magnetic fields. Int J Adv Manuf Tech 100:2283–2297. https://doi.org/10.1007/s00170-018-2747-6

    Article  Google Scholar 

  77. Ranjan P, Balasubramaniam R, Jain VK (2019) Mechanism of material removal during nanofinishing of aluminium in aqueous KOH: a reactive molecular dynamics simulation study. Comp Mater Sci 156:35–46. https://doi.org/10.1016/j.commatsci.2018.09.042

    Article  CAS  Google Scholar 

  78. Ji JW, Gao W, Wang C, Zhang YF, Fan W et al (2019) Evolution and removal of surface scratches on fused silica under magnetorheological finishing. Optic Eng 58. https://doi.org/10.1117/1.Oe.58.5.055102

  79. Luo C, Shi F, YeTian YYZ (2019) A combination process of magnetorheological finishing and computer controlled optical surfacing on single-crystal silicon surface. Proc SPIE 10838. https://doi.org/10.1117/12.2504810

  80. Liang H, Yan Q, Lu J, Luo B, Xiao X (2019) Material removal mechanisms in chemical-magnetorheological compound finishing. Int J Adv Manufac Technol 103:1337–1348. https://doi.org/10.1007/s00170-019-03594-5

    Article  Google Scholar 

  81. Yadav RD, Singh AK (2019) A novel magnetorheological gear profile finishing with high shape accuracy. Int J Mach Tools Manuf 139:75–92. https://doi.org/10.1016/j.ijmachtools.2019.02.001

    Article  Google Scholar 

  82. Singh M, Singh AK (2019) Performance investigation of magnetorheological finishing of rolls surface in cold rolling process. J Manuf Process 41:315–329. https://doi.org/10.1016/j.jmapro.2019.04.007

    Article  Google Scholar 

  83. Liu H, Cheng J, Wang T, Chen M (2019) Magnetorheological finishing of an irregular-shaped small-bore complex component using a small ball-end permanent-magnet polishing head. Nanotechnol Precis Eng 2:125–129. https://doi.org/10.1016/j.npe.2019.10.001

    Article  Google Scholar 

  84. Kataria M, Mangal SK (2019) Development of continuous flow magnetorheological fluid finishing process for finishing of small holes. J Braz Soc Mech Sci Eng 41:1–13. https://doi.org/10.1007/s40430-019-2027-x

    Article  CAS  Google Scholar 

  85. Li X, Ye M, Liu J, Tian D, Zhang Y et al (2019) Influence of pH value on removal effect of fused silica during magnetorheological finishing. Optic Precis Eng 27:2602–2608. https://doi.org/10.3788/OPE.20192712.2602

    Article  Google Scholar 

  86. Rosa WO, Vereda F, de Vicente J (2019) Tribological behavior of glycerol/water-based magnetorheological fluids in PMMA point contacts. Front Mater 6. https://doi.org/10.3389/fmats.2019.00032

  87. Guo XY, Shu Y, Kim GH, Palmer M, Choi H, Kim DW (2019) Pseudorandom orbiting stroke for freeform optics postprocessing. Optic Eng 58. https://doi.org/10.1117/1.Oe.58.9.092608

  88. Song WL, Peng Z, Li PF, Shi P, Choi SB (2020) Annular surface micromachining of titanium tubes using a magnetorheological polishing technique. Micromachines-Basel 11:314. https://doi.org/10.3390/mi11030314

    Article  PubMed  PubMed Central  Google Scholar 

  89. Aggarwal A, Singh AK (2021) Development of grinding wheel type magnetorheological finishing process for blind hole surfaces. Mater Manuf Process 36:457–478. https://doi.org/10.1080/10426914.2020.1843666

    Article  CAS  Google Scholar 

  90. Liu SW, Wang HX, Zhang QH, Hou J, Zhong B, Chen XH (2020) Regionalized modeling approach of tool influence function in magnetorheological finishing process for aspherical optics. Optik 206:164368. https://doi.org/10.1016/j.ijleo.2020.164368

    Article  Google Scholar 

  91. Liu J, Li X, Zhang Y, Tian D, Ye M, Wang C (2020) Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress. Appl Surf Sci 504:144492. https://doi.org/10.1016/j.apsusc.2019.144492

    Article  CAS  Google Scholar 

  92. Luo B, Yan Q, Pan J, Guo M (2020) Uniformity of cluster magnetorheological finishing with dynamic magnetic fields formed by multi-magnetic rotating poles based on the cluster principle. Int J Adv Manufac Technol 107:919–934. https://doi.org/10.1007/s00170-020-05088-1

    Article  Google Scholar 

  93. Sirwal SA, Singh AK, Paswan SK (2020) Experimental analysis of magnetorheological finishing of blind hole surfaces using permanent magnet designed tools. J Braz Soc Mech Sci Eng 42:23. https://doi.org/10.1007/s40430-020-2225-6

    Article  CAS  Google Scholar 

  94. Tian Y, Shi C, Fan Z, Zhou Q (2020) Experimental investigations on magnetic abrasive finishing of Ti-6Al-4V using a multiple pole-tip finishing tool. Int J Adv Manuf Technol 106:3071–3080. https://doi.org/10.1007/s00170-019-04871-z

    Article  Google Scholar 

  95. Singh M, Singh AK (2020) Theoretical investigations into magnetorheological finishing of external cylindrical surfaces for improved performance. P I Mech Eng C-J Mec 234:4872–4892. https://doi.org/10.1177/0954406220931550

    Article  Google Scholar 

  96. Kumari C, Chak SK, Vani VV (2020) Experimental investigations and optimization of machining parameters for magneto-rheological abrasive honing process. Mater Manuf Process 35:1622–1630. https://doi.org/10.1080/10426914.2020.1779938

    Article  CAS  Google Scholar 

  97. Zhou T, Zhang Y, Fan W, Huang W, Zhang J et al (2020) Precise localization of rotary symmetrical aspheric workpiece in magnetorheological polishing. Optic Precis Eng 28:610–620. https://doi.org/10.3788/OPE.20202803.0610

    Article  Google Scholar 

  98. Kumar V, Kumar R, Kumar H (2020) Rheological characterization and finishing performance evaluation of vegetable oil-based bi-dispersed magnetorheological finishing fluid. Lect Notes Mech Eng:407–415. https://doi.org/10.1007/978-981-15-1071-7_34

  99. Kumar V, Kumar R, Kumar H (2020) Rheological characterization and performance evaluation of magnetorheological finishing fluid. J Appl Fluid Mech 13:185–197. https://doi.org/10.29252/jafm.13.01.29763

    Article  Google Scholar 

  100. Baghel PK, Kumar R (2021) Estimation of magnetorheological fluid constituent’s concentration for efficient finishing process. Mater Manuf Process 36:626–635. https://doi.org/10.1080/10426914.2020.1843675

    Article  CAS  Google Scholar 

  101. Bedi TS, Singh AK (2016) Magnetorheological methods for nanofinishing - a review. Part Sci Technol 34:412–422. https://doi.org/10.1080/02726351.2015.1081657

    Article  CAS  Google Scholar 

  102. Ajay MS (2014) Magnetorheological finishing: a perfect solution to nanofinishing requirements. Optic Eng 53:1–8. https://doi.org/10.1117/1.OE.53.9.092002

    Article  Google Scholar 

  103. Jain VK, Sidpara A, Sankar MR, Das M (2011) Nano-finishing techniques: a review. Proc Inst Mech Eng Part C: J Mech Eng Sci 226:327–346. https://doi.org/10.1177/0954406211426948

    Article  CAS  Google Scholar 

  104. Li YL, Shen XQ (2014) Research progress on magnetorheological fluid. Appl Mech Mater 633:337–340. https://doi.org/10.4028/www.scientific.net/AMM.633-634.337

    Article  Google Scholar 

  105. Xiao X, Yan Q, Pan J, Yu P, Liang H et al (2016) A review on ultra-precision compound polishing technology of magnetorheological. J Guangdong Univ Technol 33:28–33. https://doi.org/10.3969/j.issn.1007-7162.2016.06.004 (in Chinese)

    Article  Google Scholar 

  106. Peng YF, Shen BY, Wang ZZ, Yang P, Yang W, Bi G (2021) Review on polishing technology of small-scale aspheric optics. Int J Adv Manuf Tech 115:965–987. https://doi.org/10.1007/s00170-021-07202-3

    Article  Google Scholar 

  107. Donald G (1999) Precision optics manufacturing using magnetorheological finishing (MRF). Proc.SPIE-The International Society for. Optic Eng 3739:78–85. https://doi.org/10.1117/12.360131

    Article  Google Scholar 

  108. Kumar M, Kumar A, Alok A, Das M (2020) Magnetorheological method applied to optics polishing: a review. IOP Conf Ser: Mater Sci Eng 804:012012. https://doi.org/10.1088/1757-899x/804/1/012012

    Article  CAS  Google Scholar 

  109. Peng X, Dai Y, Li S (2004) Materal removal model of magnetorheological finishing. J Mech Eng 40:67–70. https://doi.org/10.3901/JME.2004.04.067

    Article  Google Scholar 

  110. Zhang F, Zhang X, Yu J, Wang D, Guo P et al (2000) Foundation of mathematics model of magnetorheological finishing. Optical Technique 26:190–192. https://doi.org/10.13741/j.cnki.11-1879/o4.2000.02.032 (in Chinese)

    Article  Google Scholar 

  111. Zhang Y, Feng Z, Zhao G (2004) Magnetorheological finishing tool and removal function. J Tsinghua Univ (Sci & Tech) 44:190–193. https://doi.org/10.16511/j.cnki.qhdxxb.2004.02.013 (in Chinese)

    Article  Google Scholar 

  112. Mutalib NA, Ismail I, Soffie SM, Aqida SN (2019) Magnetorheological finishing on metal surface: a review. IOP Conf Ser: Mater Sci Eng 469:012092. https://doi.org/10.1088/1757-899x/469/1/012092

    Article  CAS  Google Scholar 

  113. Shu Y, Jiao CJ, Duan WR (2020) The impurity study of MRF processed fused silica surface. Optik 216:164962. https://doi.org/10.1016/j.ijleo.2020.164962

    Article  CAS  Google Scholar 

  114. Jung B, Jang KI, Min BK, Lee SJ, Seok J (2009) Magnetorheological finishing process for hard materials using sintered iron-CNT compound abrasives. Int J Mach Tool Manu 49:407–418. https://doi.org/10.1016/j.ijmachtools.2008.12.002

    Article  Google Scholar 

  115. Gupta MK, Dinakar D, Chhabra IM, Jha S, Madireddy BS (2021) Experimental investigation and machine parameter optimization for nano finishing of fused silica using magnetorheological finishing process. Optik 226:165908. https://doi.org/10.1016/j.ijleo.2020.165908

    Article  CAS  Google Scholar 

  116. Iqbal F, Alam Z, Khan DA, Jha S (2022) Automated insular surface finishing by ball end magnetorheological finishing process. Mater Manuf Process 37:437–447. https://doi.org/10.1080/10426914.2021.2001502

    Article  CAS  Google Scholar 

  117. Yang ZQ, Guo ZD, Liu WG (2013) Clitella magnetorheological finishing method and equipment. Key Eng Mater 552:227–233. https://doi.org/10.4028/www.scientific.net/KEM.552.227

    Article  Google Scholar 

  118. Singh AK, Jha S, Pandey PM (2013) Mechanism of material removal in ball end magnetorheological finishing process. Wear 302:1180–1191. https://doi.org/10.1016/j.wear.2012.11.082

    Article  CAS  Google Scholar 

  119. Singh AK, Jha S, Pandey PM (2012) Parametric analysis of an improved ball end magnetorheological finishing process. P I Mech Eng B-J Eng 226:1550–1563. https://doi.org/10.1177/0954405412453805

    Article  CAS  Google Scholar 

  120. Singh M, Singh AK (2021) Magnetorheological finishing of variable diametric external surface of the tapered cylindrical workpieces for functionality improvement. J Manuf Process 61:153–172. https://doi.org/10.1016/j.jmapro.2020.10.074

    Article  Google Scholar 

  121. Alam Z, Iqbal F, Ganesan S, Jha S (2019) Nanofinishing of 3D surfaces by automated five-axis CNC ball end magnetorheological finishing machine using customized controller. Int J Adv Manuf Tech 100:1031–1042. https://doi.org/10.1007/s00170-017-1518-0

    Article  Google Scholar 

  122. Singh M, Singh AK (2019) Magnetorheological finishing of micro-punches for enhanced performance of micro-extrusion process. Mater Manuf Process 34:1646–1657. https://doi.org/10.1080/10426914.2019.1689262

    Article  CAS  Google Scholar 

  123. Aggarwal A, Singh AK (2021) Experimental investigation for fine finishing of the tapered mould cavity using a newly developed GWMRF process. J Braz Soc Mech Sci Eng 43. https://doi.org/10.1007/s40430-021-03159-2

  124. Bedi TS, Singh AK (2018) A new magnetorheological finishing process for ferromagnetic cylindrical honed surfaces. Mater Manuf Process 33:1141–1149. https://doi.org/10.1080/10426914.2016.1269925

    Article  CAS  Google Scholar 

  125. Grover V, Singh AK (2018) Analysis of particles in magnetorheological polishing fluid for finishing of ferromagnetic cylindrical workpiece. Part Sci Technol 36:799–807. https://doi.org/10.1080/02726351.2017.1302535

    Article  CAS  Google Scholar 

  126. Paswan SK, Bedi TS, Singh AK (2017) Modeling and simulation of surface roughness in magnetorheological fluid based honing process. Wear 376:1207–1221. https://doi.org/10.1016/j.wear.2016.11.025

    Article  CAS  Google Scholar 

  127. Ren K, Luo X, Zheng LG, Bai Y, Li LX et al (2014) Belt-MRF for large aperture mirrors. Optic Express 22:19262–19276. https://doi.org/10.1364/Oe.22.019262

    Article  Google Scholar 

  128. Umehara N, Kirtane T, Gerlick R, Jain VK, Komanduri R (2006) A new apparatus for finishing large size/large batch silicon nitride(Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). Int J Mach Tool Manu 46:151–169. https://doi.org/10.1016/j.ijmachtools.2005.04.015

    Article  Google Scholar 

  129. Zhang F, Pan S, Zhang X, Wang D, Zhang Z et al (2001) Research on material removel of magnetorheological finishing. Optical Technique 27:522–525. https://doi.org/10.13741/j.cnki.11-1879/o4.2001.06.019 (in Chinese)

    Article  Google Scholar 

  130. Liang HZ, Lu JB, Pan JS, Yan QS (2018) Material removal process of single-crystal SiC in chemical-magnetorheological compound finishing. Int J Adv Manuf Tech 94:2939–2948. https://doi.org/10.1007/s00170-017-1098-z

    Article  Google Scholar 

  131. Luo B, Yan QS, Chai JF, Song WQ, Pan JS (2022) An ultra-smooth planarization method for controlling fluid behavior in cluster magnetorheological finishing based on computational fluid dynamics. Precis Eng 74:358–368. https://doi.org/10.1016/j.precisioneng.2022.01.001

    Article  Google Scholar 

  132. Luo B, Yan QS, Huang ZL, Pan JS, Fu YZ (2021) Machining method for controlling the behaviours of Bingham fluids in cluster magnetorheological polishing pads. Smart Mater Struct 30. https://doi.org/10.1088/1361-665X/abcd6d

  133. Xie ML, An ZJ, Zhuang J (2022) Design and experimental research of dynamic magnetic field device based on Halbach array in magnetorheological polishing. Int J Adv Manuf Tech 120:5807–5822. https://doi.org/10.1007/s00170-022-09134-y

    Article  Google Scholar 

  134. Srivastava M, Pandey PM (2021) Experimental investigation into polishing of monocrystalline silicon wafer using double-disc chemical assisted magnetorheological finishing process. P I Mech Eng C-J Mec 235:5467–5486. https://doi.org/10.1177/0954406220983849

    Article  CAS  Google Scholar 

  135. Liang HZ, Lu JB, Yan QS (2018) Catalysts based on Fenton reaction for SiC wafer in chemical magnetorheological finishing. Aims Mater Sci 5:1112–1123. https://doi.org/10.3934/matersci.2018.6.1112

    Article  CAS  Google Scholar 

  136. Zhang FH, Wang HJ, Liu JF, Luan DR, Zhang Y (2008) Study on the surface quality of optical glass in ultrasonic-magnetorheological compound finishing. Key Eng Mater 389:181–186. https://doi.org/10.4028/www.scientific.net/KEM.389-390.181

    Article  Google Scholar 

  137. Lu JB, Yan QS, Tian H, Gao WQ (2010) Effect of abrasive on the machining performance of the EMR-effect-based tiny-grinding wheel. Adv Mater Res 135:24. https://doi.org/10.4028/www.scientific.net/AMR.135.24

    Article  CAS  Google Scholar 

  138. Zhang FH, Wang HJ, Luan DR (2006) Research on machining mechanics and experiment of ultrasonic-magnetorheological compound finishing. Adv Abrasive Mach Surf Technol Process 25. https://doi.org/10.1504/IJCAT.2007.015275

  139. Zhai Q, Zhai W, Gao B, Shi Y, Cheng X (2021) Synthesis and characterization of nanocomposite Fe3O4/SiO2 core–shell abrasives for high-efficiency ultrasound-assisted magneto-rheological polishing of sapphire. Ceramic Int 47:31681–31690. https://doi.org/10.1016/j.ceramint.2021.08.047

    Article  CAS  Google Scholar 

  140. Yu XB, Zhang FH, Zhang Y, Lin YY, Fu PQ (2010) Planning and implementation of tool path computer controlled polishing optical surfaces. Proc SPIE-Int Soc Optic Eng 7655:765510. https://doi.org/10.1117/12.867919

    Article  Google Scholar 

  141. Zhang FH, Yu XB, Zhang Y, Lin YY, Luan DR (2009) Experimental study on polishing characteristics of ultrasonic- magnetorheological compound finishing. Adv Mater Res 76:235–239. https://doi.org/10.4028/www.scientific.net/AMR.76-78.235

    Article  Google Scholar 

  142. Zhang Y, Zhang FH, Zhang GY, Luan DR (2009) Research on NC interpolation algorithm for rotary symmetric aspheric ultrasonic-magnetorheological compound finishing. J Vac Sci Technol B 27:1509–1513. https://doi.org/10.1116/1.3117260

    Article  CAS  Google Scholar 

  143. Zhang FH, Yu XB, Zhang Y, Lin YY (2010) Polyline dwell time algorithm for every type of tool path for ultrasonic-magnetorheological combined finishing. Adv Mater Res 126:435–440. https://doi.org/10.4028/www.scientific.net/AMR.126-128.435

    Article  Google Scholar 

  144. Zhang FH, Yu XB, Zhang Y (2010) Post processing algorithm of ultrasonic-magnetorheological combined finishing for aspheric surfaces. Surf Finish Technol Surf Eng II 135:116–121. https://doi.org/10.4028/www.scientific.net/AMR.135.116

    Article  Google Scholar 

  145. Wang H, Zhang F, Zhang Y, Luan D (2007) Research on material removal of ultrasonic-magnetorheological compound finishing. Int J Mach Mach Mater 2:50–58. https://doi.org/10.1504/IJMMM.2007.012666

    Article  Google Scholar 

  146. Liu Y, Yan QS, Lu JB, Gao WQ, Yang Y (2009) Micro machining of three-dimensional microstructure with the tiny-grinding wheel based on the electro-magneto-rheological effect. Key Eng Mater 407:363–367. https://doi.org/10.4028/www.scientific.net/KEM.407-409.363

    Article  Google Scholar 

  147. Tian H, Yan QS, Lu JB, Yu J (2007) Foundational study on micro machining with instantaneous tiny-grinding wheel based on electro-magneto-rheological effect. Proc SPIE Int Soc Opt Eng 6724:7240. https://doi.org/10.1117/12.782682

    Article  Google Scholar 

  148. Huang ZL, Pan JS, Luo B, Yan QS, Chen ZJ (2022) Basic exploration and research on magnetoelectric synergistic rheological finishing. J Intel Mat Syst Str. https://doi.org/10.1177/1045389x221088028

  149. Lu JB, Yan QS, Tian H, Gao WQ (2010) Synergistic effect of electro-magnetically coupled field in polishing with the EMR effect-based tiny-grinding wheel. Tribology 30:190–196. https://doi.org/10.16078/j.tribology.2010.02.007 (in Chinese)

    Article  CAS  Google Scholar 

  150. Kordonski W, Golini D (2002) Multiple application of magnetorheological effect in high precision finishing. J Intel Mat Syst Str 13:401–404. https://doi.org/10.1106/104538902026104

    Article  Google Scholar 

  151. Shi F, Dai Y, Peng X, Kang N, Liu Z et al (2009) Study on the mechanism and arts of magnetorheological finishing (MRF) by nano-sized diamond abrasives. J Natl Univ Def Technol 31:25–30

    CAS  Google Scholar 

  152. Kang GW, Zhang FH (2006) Research on material removal mechanism of magnetorheological finishing. Mater Sci Forum 532:133–136. https://doi.org/10.4028/www.scientific.net/MSF.532-533.133

    Article  Google Scholar 

  153. Shorey AB (2000) Mechanisms of material removal in magnetorheological finishing (MRF) of glass, Dissertation,. University of Rochester, Rochester, New York

    Google Scholar 

  154. Li B, Zhou Q, Yang J, Cheng L, Tao X et al (2011) The multiple effect modeling and quality control of magnetorheological finishing. Mechanical Science and Technology for. Aerospace Eng 30:2135–2145. https://doi.org/10.13433/j.cnki.1003-8728.2011.12.010

    Article  Google Scholar 

  155. Guo H, Wu Y, Lu D, Fujimoto M, Nomura M (2014) Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry. J Mater Process Tech 214:2759–2769. https://doi.org/10.1016/j.jmatprotec.2014.06.014

    Article  Google Scholar 

  156. Schinhaerl M, Smith G, Stamp R, Rascher R, Smith L et al (2008) Mathematical modelling of influence functions in computer-controlled polishing: Part II. Appl Math Model 32:2907–2924. https://doi.org/10.1016/j.apm.2007.10.012

    Article  Google Scholar 

  157. Dai YF, Song C, Peng XQ, Shi F (2010) Calibration and prediction of removal function in magnetorheological finishing. Appl Optic 49:298–306. https://doi.org/10.1364/Ao.49.000298

    Article  Google Scholar 

  158. Dubey NK, Sidpara A (2021) Numerical and experimental study of influence function in magnetorheological finishing of oxygen-free high conductivity (OFHC) copper. Smart Mater Struct 30. https://doi.org/10.1088/1361-665X/abcca5

  159. Kordonski W, Gorodkin S (2011) Material removal in magnetorheological finishing of optics. Appl Optic 50:1984–1994. https://doi.org/10.1364/Ao.50.001984

    Article  Google Scholar 

  160. Li XY, Li QK, Ye ZY, Zhang YF, Ye MH, Wang C (2021) Surface roughness tuning at sub-nanometer level by considering the normal stress field in magnetorheological finishing. Micromachines-Basel 12:997. https://doi.org/10.3390/mi12080997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ranjan P, Balasubramaniam R, Jain VK (2017) Analysis of magnetorheological fluid behavior in chemo-mechanical magnetorheological finishing (CMMRF) process. Precis Eng 49:122–135. https://doi.org/10.1016/j.precisioneng.2017.02.001

    Article  Google Scholar 

  162. Kordonski WI, Jacobs SD (1996) Magnetorheological finishing. Int J Mod Phys B 10:2837–2848. https://doi.org/10.1142/s0217979296001288

    Article  CAS  Google Scholar 

  163. Yi C, Peng X, Zhao C (2010) A magnetic-dipoles-based micro–macro constitutive model for MRFs subjected to shear deformation. Rheol Acta 49:815–825. https://doi.org/10.1007/s00397-010-0468-3

    Article  CAS  Google Scholar 

  164. Cao J, Li J, Nie M, Zhu P, Zhao C et al (2019) A novel surface polishing method and its fundamental performance in ultra-fine polishing of wafer. Int J Adv Manuf Technol 105:2919–2933. https://doi.org/10.1007/s00170-019-04473-9

    Article  Google Scholar 

  165. Zhang Z, Geng K, Qiao G, Zhang J (2021) The heat flow coupling effect of laser-assisted magnetorheological polishing. Int J Adv Manuf Technol 114:591–603. https://doi.org/10.1007/s00170-021-06880-3

    Article  Google Scholar 

  166. Khatri N, Tewary S, Manoj XJ, Garg H, Karar V (2018) Magnetorheological finishing of silicon for nanometric surface generation: an experimental and simulation study. J Intel Mat Syst Str 29:2456–2464. https://doi.org/10.1177/1045389x18770869

    Article  Google Scholar 

  167. Paswan SK, Singh AK (2021) Investigation of optimized parameters for magnetorheological finishing the internal surface of the cast-iron cylindrical molds. Arab J Sci Eng 46:2147–2164. https://doi.org/10.1007/s13369-020-05018-z

    Article  Google Scholar 

  168. Ghosh G, Sidpara A, Bandyopadhyay PP (2021) Experimental and theoretical investigation into surface roughness and residual stress in magnetorheological finishing of OFHC copper. J Mater Process Tech 288:116899. https://doi.org/10.1016/j.jmatprotec.2020.116899

    Article  CAS  Google Scholar 

  169. Yadav RD, Singh AK, Arora K (2020) Parametric analysis of magnetorheological finishing process for improved performance of gear profile. J Manuf Process 57:254–267. https://doi.org/10.1016/j.jmapro.2020.06.024

    Article  Google Scholar 

  170. Pan JS, Zheng K, Yan QS, Zhang QX, Lu JB (2020) Optimization study on magnetorheological fluid components and process parameters of cluster magnetorheological finishing with dynamic magnetic field for sapphire substrates. Smart Mater Struct 29. https://doi.org/10.1088/1361-665X/abb988

  171. Wu JZ, Yin SH, Yang SJ, Guo YF (2020) Study on magnetorheological nano-polishing using low-frequency alternating magnetic field. Adv Mech Eng 12. https://doi.org/10.1177/1687814019900721

  172. Kumar M, Das M (2022) Effect of optimum process parameters in rotational-magnetorheological poppet valve polishing. Mater Manuf Process 37:393–406. https://doi.org/10.1080/10426914.2021.2016818

    Article  CAS  Google Scholar 

  173. Xiu SC, Wang RS, Sun BW, Ma L, Song WL (2018) Preparation and experiment of magnetorheological polishing fluid in reciprocating magnetorheological polishing process. J Intel Mat Syst Str 29:125–136. https://doi.org/10.1177/1045389x17698247

    Article  CAS  Google Scholar 

  174. Xiao XL, Li GX, Mei HJ, Yan QS, Lin HT, Zhang FL (2020) Polishing of silicon nitride ceramic balls by clustered magnetorheological finish. Micromachines (Basel) 11:304. https://doi.org/10.3390/mi11030304

    Article  PubMed  Google Scholar 

  175. Chana A, Singh AK (2019) Magnetorheological nano-finishing of tube extrusion punch for improving its functional applications in press machine. Int J Adv Manuf Tech 103:2037–2052. https://doi.org/10.1007/s00170-019-03633-1

    Article  Google Scholar 

  176. Saraswathamma K, Jha S, Rao PV (2015) Experimental investigation into Ball end magnetorheological Finishing of silicon. Precis Eng 42:218–223. https://doi.org/10.1016/j.precisioneng.2015.05.003

    Article  Google Scholar 

  177. Das M, Jain VK, Ghoshdastidar PS (2012) Nanofinishing of flat workpieces using rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Int J Adv Manuf Tech 62:405–420. https://doi.org/10.1007/s00170-011-3808-2

    Article  Google Scholar 

  178. Kathiresan S, Mohan B (2017) Experimental analysis of magneto rheological abrasive flow finishing process on AISI stainless steel 316L. Mater Manuf Process 33:422–432. https://doi.org/10.1080/10426914.2017.1279317

    Article  CAS  Google Scholar 

  179. Kathiresan S, Mohan B (2020) Multi-objective optimization of magneto rheological abrasive flow nano finishing process on AISI stainless steel 316L. J Nano Res 63:98–111. https://doi.org/10.4028/www.scientific.net/JNanoR.63.98

    Article  CAS  Google Scholar 

  180. Kumar M, Ahmad S, Das M (2022) Magnetorheological-finishing of miniature gear teeth profiles using uniform flow restrictor. Mater Manuf Process 37:467–482. https://doi.org/10.1080/10426914.2021.1954193

    Article  CAS  Google Scholar 

  181. Shu QL, Hai K, Huang W, Jiang LL, Yuan SH et al (2022) Evolution law of comet-shaped defects in magnetorheological finishing. Appl Optic 61:691–698. https://doi.org/10.1364/Ao.441795

    Article  CAS  Google Scholar 

  182. Deng JY, Lu JB, Yan QS, Zhang QX, Pan JS (2021) Preparation and polishing properties of water-based magnetorheological chemical finishing fluid with high catalytic activity for single-crystal SiC. J Intel Mat Syst Str 32:1441–1451. https://doi.org/10.1177/1045389x20975503

    Article  CAS  Google Scholar 

  183. Nagdeve L, Sidpara A, Jain VK, Ramkumar J (2018) On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process. Mach Sci Technol 22:493–506. https://doi.org/10.1080/10910344.2017.1365899

    Article  CAS  Google Scholar 

  184. Xu JH, Li JY, Cao JG (2018) Effects of fumed silica weight fraction on rheological properties of magnetorheological polishing fluids. Colloid Polym Sci 296:1145–1156. https://doi.org/10.1007/s00396-018-4332-9

    Article  CAS  Google Scholar 

  185. Bai Y, Xue DL, Zhang XJ (2019) Polishing performance of magnetorheological finishing with flocculated and deflocculated aqueous polishing fluid. Optic Eng 58. https://doi.org/10.1117/1.Oe.58.2.025104

  186. Sidpara A, Jain VK (2012) Nano–level finishing of single crystal silicon blank using magnetorheological finishing process. Tribol Int 47:159–166. https://doi.org/10.1016/j.triboint.2011.10.008

    Article  CAS  Google Scholar 

  187. Khan DA, Jha S (2017) Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper. Int J Adv Manuf Technol 100:1093–1103. https://doi.org/10.1007/s00170-017-1056-9

    Article  Google Scholar 

  188. Rendos A, Woodman S, McDonald K, Ranzani T, Brown KA (2020) Shear thickening prevents slip in magnetorheological fluids. Smart Mater Struct 29:7. https://doi.org/10.1088/1361-665X/ab8b2e

    Article  Google Scholar 

  189. Ghai V, Ranjan P, Batish A, Singh H (2018) Atomic-level finishing of aluminum alloy by chemo-mechanical magneto-rheological finishing (CMMRF) for optical applications. J Manuf Process 32:635–643. https://doi.org/10.1016/j.jmapro.2018.03.032

    Article  Google Scholar 

  190. Srivastava M, Pandey PM, Basheed GA, Pant RP (2021) Synthesis and characterization of the rheological behavior of MR fluid for polishing silicon wafer using double-disc chemical-assisted magneto-rheological finishing process. J Magn Magn Mater 534:168044. https://doi.org/10.1016/j.jmmm.2021.168044

    Article  CAS  Google Scholar 

  191. Tian JC, Chen MJ, Liu HN, Qin BA, Cheng J, Sun YZ (2022) Study on mechanism of improving efficiency of permanent-magnet small ball-end magnetorheological polishing by increasing magnetorheological fluid temperature. Sci Rep-Uk 12. https://doi.org/10.1038/s41598-022-11937-8

  192. Grover V, Singh AK (2019) Parametric optimization of a newly developed magnetorheological honing process for internal finishing of EN-31 cylindrical workpieces. Eng Res Express 1. https://doi.org/10.1088/2631-8695/ab551c

  193. Kumar S, Singh AK (2018) Nanofinishing of BK7 glass using a magnetorheological solid rotating core tool. Appl Optic 57:942–951. https://doi.org/10.1364/Ao.57.000942

    Article  CAS  Google Scholar 

  194. Xiao Q, Chen G (2018) Effect of cluster magnetorheological finishing parameters on subsurface damage depth. Acta Photonica Sinic 47. https://doi.org/10.3788/gzxb20184701.0124001 (in Chinese)

  195. Wang B, Shi F, Tie GP, Zhang WL, Song C et al (2022) The cause of ribbon fluctuation in magnetorheological finishing and its influence on surface mid-spatial frequency error. Micromachines-Basel 13. https://doi.org/10.3390/mi13050697

  196. Ghosh G, Dalabehera RK, Sidpara A (2019) Parametric study on influence function in magnetorheological finishing of single crystal silicon. Int J Adv Manuf Tech 100:1043–1054. https://doi.org/10.1007/s00170-018-2330-1

    Article  Google Scholar 

  197. Sidpara A, Das M, Jain VK (2009) Rheological characterization of magnetorheological finishing fluid. Mater Manuf Process 24:1467–1478. https://doi.org/10.1080/10426910903367410

    Article  Google Scholar 

  198. Sidpara A, Jain VK (2012) Experimental investigations into surface roughness and yield stress in magnetorheological fluid based nano-finishing process. Int J Precis Eng Manuf 13:855–860. https://doi.org/10.1007/s12541-012-0111-6

    Article  Google Scholar 

  199. Singh M, Paswan SK (2022) Magnetorheological finishing of aluminium cylindrical roller for enhanced performance of printing operation. P I Mech Eng E-J Pro. https://doi.org/10.1177/09544089221093010

  200. Lee SN, Lee JI, Kim YJ, Yook JG (2007) Low-loss thin film microstrip lines and filters based on magnetorheological finishing. Ieee T Compon Pack T 30:849–854. https://doi.org/10.1109/Tcapt.2007.906700

    Article  CAS  Google Scholar 

  201. Yan JW, Pan JS, Yan QS, Zhou R, Wu YS (2023) Controllable electrochemical-magnetorheological finishing of single-crystal gallium nitride wafers. J Solid State Electr 27:597–610. https://doi.org/10.1007/s10008-022-05322-8

    Article  CAS  Google Scholar 

  202. Paswan SK, Singh AK (2022) Internal magnetorheological finishing of a typical outer race of ball bearing. Mater Manuf Process. https://doi.org/10.1080/10426914.2022.2032139

  203. Xu C, Hu H, Peng XQ, Li XL, Lin ZF (2021) Optimization of magnetorheological finishing process for aluminum mirror with complex surface. Acta Aeronauticaet Aatronautica Sinica 42:524914–524914. https://doi.org/10.7527/S1000-6893.2020.24914 (in Chinese)

  204. Singh M, Singh AK (2020) Magnetorheological finishing of grooved drum surface and its performance analysis in winding process. Int J Adv Manuf Technol 106:2921–2937. https://doi.org/10.1007/s00170-019-04812-w

    Article  Google Scholar 

  205. Hou J, Chen XH, Li J, Zhong B, Deng WH, Zheng N (2019) Processing technology of magnetorheological finishing for large-aperture optical components. Proc SPIE - Int Soc Optic Eng:11068. https://doi.org/10.1117/12.2524540

  206. Shlyago YI, Bibik EE, Evstishenkov VS, Skobochkin VE, Shlyago OA (1978) Use of magnetorheological liquids with an abrasive filler for the finishing of glass. Glass Ceram 35:28–30. https://doi.org/10.1007/BF00695095

    Article  Google Scholar 

  207. Pollicove H, Golini D (2003) Deterministic manufacturing processes for precision optical surfaces. Key Eng Mater 238:53–58. https://doi.org/10.4028/www.scientific.net/KEM.238-239.53

    Article  Google Scholar 

  208. Shorey AB, Jacobs SD, Kordonski WI, Gans RF (2001) Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing. Appl Optic 40:20–33. https://doi.org/10.1364/Ao.40.000020

    Article  CAS  Google Scholar 

  209. Jha S, Jain VK (2004) Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tool Manu 44:1019–1029. https://doi.org/10.1016/j.ijmachttools.2004.03.007

    Article  Google Scholar 

  210. Kim WB, Lee SH, Min BK (2004) Surface finishing and evaluation of three-dimensional silicon microchannel using magnetorheological fluid. J Manuf Sci E-T Asme 126:772–778. https://doi.org/10.1115/1.1811113

    Article  Google Scholar 

  211. Cheng HB, Feng ZJ, Wang YW, Lei ST (2005) Magnetorheological finishing of SiC aspheric mirrors. Mater Manuf Process 20:917–931. https://doi.org/10.1081/Amp-200060417

    Article  CAS  Google Scholar 

  212. Shafrir SN, Lambropoulos JC, Jacobs SD (2007) A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides. Precis Eng 31:83–93. https://doi.org/10.1016/j.precisioneng.2006.03.002

    Article  Google Scholar 

  213. Singh AK, Jha S, Pandey PM (2012) Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process. Int J Mach Tool Manu 63:21–31. https://doi.org/10.1016/j.ijmachtools.2012.07.002

    Article  Google Scholar 

  214. Song C, Dai YF, Peng XQ (2013) Magnetorheological finishing of low-gradient curved surfaces based on four-axis linkage technique. J Cent South Univ 20:2349–2358. https://doi.org/10.1007/s11771-013-1743-0

    Article  Google Scholar 

  215. Wang YY, Zhang Y, Feng ZJ (2016) Analyzing and improving surface texture by dual-rotation magnetorheological finishing. Appl Surf Sci 360:224–233. https://doi.org/10.1016/j.apsusc.2015.11.009

    Article  CAS  Google Scholar 

  216. Zhang P, Dong YZ, Choi HJ, Lee CH, Gao YS (2020) Reciprocating magnetorheological polishing method for borosilicate glass surface smoothness. J Ind Eng Chem 84:243–251. https://doi.org/10.1016/j.jiec.2020.01.004

    Article  CAS  Google Scholar 

  217. Gu Y, Kang MS, Lin JQ, Liu A, Fu B, Wan PH (2021) Non-resonant vibration-assisted magnetorheological finishing. Precis Eng 71:263–281. https://doi.org/10.1016/j.precisioneng.2021.03.016

    Article  Google Scholar 

  218. Zhang L, Zhang CL, Fan W (2022) Robotic magnetorheological finishing technology based on constant polishing force control. Appl Sci-Basel 12. https://doi.org/10.3390/app12083737

  219. More AK, Chanmanwar RM (2019) Experimental investigation of magnetorheological finishing on copper alloy. Mater Today-Proc 19:312–316. https://doi.org/10.1016/j.matpr.2019.07.215

    Article  CAS  Google Scholar 

  220. Arora K, Singh AK (2021) Theoretical and experimental investigation on surface roughness of straight bevel gears using a novel magnetorheological finishing process. Wear 476:203693. https://doi.org/10.1016/j.wear.2021.203693

    Article  CAS  Google Scholar 

  221. Zhao FX, Zhou L, Fan ZB, Dai ZC (2018) Research on surface processing of quartz wafer based on magnetorheological finishing and ion beam figuring. Procedia CIRP 71:496–499. https://doi.org/10.1016/j.procir.2018.05.016

    Article  Google Scholar 

Download references

Funding

This work was supported by Key R&D Projects of the Ministry of Science and Technology of China (Grant Nos. 2017YFA0701200 and 2018YFB1107600), Science Center for Gas Turbine Project (P2022-A-IV-002-003), Key Scientific Research Project of Jilin Province (20210401167YY), the National Natural Science Foundation of China (Grant No. 51775237), and the Key Scientific Research Project of Jilin Provincial Department of Education (Grant No. JJKH20200972KJ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. The first and final draft of the manuscript was written by WW. SJ and JZ reviewed the manuscript critically, and all authors commented on the previous versions of the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Shijun Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ji, S. & Zhao, J. Review of magnetorheological finishing on components with complex surfaces. Int J Adv Manuf Technol 131, 3165–3191 (2024). https://doi.org/10.1007/s00170-023-11611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11611-x

Keywords

Navigation