Skip to main content
Log in

Research progress of laser welding under subatmospheric pressure

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the rapid development of laser sources and welding technologies in recent years, laser welding has been widely used in the production. In laser welding process, plasma plume often shields the input energy and defocuses the laser beam, which has significant influences on the welding efficiency and quality. It has been found that laser welding under subatmospheric environment could effectively suppress plasma plume, increase weld penetration depth, improve weld pool stability, reduce spatter and undercut, and obtain high-quality weld. After a comprehensive review of the latest research results, the plasma plume, molten pool dynamics, weld morphology, microstructure, and mechanical characteristics of various materials during laser welding under subatmospheric environment are analyzed. Finally, the future research works are discussed aiming at some remaining issues in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sureban R, Kulkarni VN, Gaitonde VN (2019) Modern optimization techniques for advanced machining processes - a review. Mater Today: Proceedings 18:3034–3042. https://doi.org/10.1016/j.matpr.2019.07.175

    Article  Google Scholar 

  2. Hong K, Shin YC (2017) Prospects of laser welding technology in the automotive industry: a review. J Mater Process Technol 245:46–69. https://doi.org/10.1016/j.jmatprotec.2017.02.008

    Article  Google Scholar 

  3. Assunção E, Quintino L, Miranda R (2009) Comparative study of laser welding in tailor blanks for the automotive industry. Int J Adv Manuf Technol 49:123–131. https://doi.org/10.1007/s00170-009-2385-0

    Article  Google Scholar 

  4. You DY, Gao XD (2008) Research status and prospects of laser welding technology. Weld Technol 37(4):5–9. https://doi.org/10.13846/j.cnki.cn12-1070/tg.2008.04.003

    Article  Google Scholar 

  5. Li YL, Huang J, Gao ZG, Wu YX, Yan Q (2008) Structure and properties of high power laser welding of high strength steel b450lad for vehicles. Chin J Lasers 35:2047–2051. https://doi.org/10.3321/j.issn:0258-7025.2008.12.038

    Article  Google Scholar 

  6. Borrisutthekul R, Miyashita Y, Mutoh Y (2016) Dissimilar material laser welding between magnesium alloy az31b and aluminum alloy a5052-o. Sci Technol Adv Mater 6:199–204. https://doi.org/10.1016/j.stam.2004.11.014

    Article  Google Scholar 

  7. Tse HC, Man HC, Yue TM (1999) Effect of magnetic field on plasma control during co2 laser welding. Opt Lasers Eng 31:363–368. https://doi.org/10.1016/S0030-3992(99)00080-8

    Article  Google Scholar 

  8. Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys Procedia 5:9–17. https://doi.org/10.1016/j.phpro.2010.08.024

    Article  Google Scholar 

  9. Wang CM, Meng XX, Huang W, Hu XY, Duan AQ (2011) Role of side assisting gas on plasma and energy transmission during co2 laser welding. J Mater Process Technol 211:668–674. https://doi.org/10.1016/j.jmatprotec.2010.12.001

    Article  Google Scholar 

  10. Yang S, Wang J, Carlson BE, Zhang J (2013) Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration. Weld J 92:197S–204S. https://doi.org/10.1016/j.scriptamat.2013.04.013

    Article  Google Scholar 

  11. Chen GY, Wang B, Mao S, Zhong PX, He J (2019) Research on the “∞”-shaped laser scanning welding process for aluminum alloy. Opt Laser Technol 115:32–41. https://doi.org/10.1016/j.optlastec.2019.01.046

    Article  Google Scholar 

  12. Gao M, Chen C, Hu M, Guo LB, Wang ZM, Zeng XY (2015) Characteristics of plasma plume in fiber laser welding of aluminum alloy. Appl Surf Sci 326:181–186. https://doi.org/10.1016/j.apsusc.2014.11.136

    Article  Google Scholar 

  13. Chen QT. (2015) Research on welding formation and plasma plume in laser welding under sun atmospheric pressure. Dissertation, Shanghai Jiao Tong University.

  14. Jiang M, Tao W, Wang SL, Li LQ, Chen YB (2017) Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding. Vacuum 138:70–79. https://doi.org/10.1016/j.vacuum.2017.01.012

    Article  Google Scholar 

  15. Jiang M, Tao W, Chen Y (2017) Laser welding under vacuum: a review. Appl Sci 7(9):909. https://doi.org/10.3390/app7090909

    Article  Google Scholar 

  16. Cai C, Chen H, Chen WH (2017) Research status and development prospects of laser welding under vacuum. Opto-Electron Eng 44:945–952. https://doi.org/10.3969/j.issn.1003-501X.2017.10.001

    Article  Google Scholar 

  17. Arata Y, Abe N, Oda T (1985) Fundamental phenomena in high power CO_2 laser (report II): Vacuum laser welding (welding physics, process & instrument). Trans JWRI 14(2):217–222

    Google Scholar 

  18. Chen DF (1987) Current situation of electron beam and laser welding and its application in pressure vessel manufacturing. Pressure Vessel 4(2):89–90

    Google Scholar 

  19. Lin D (1989) New progress in electron beam and laser beam welding. New Technol Electric Energy 2:5–11

    Google Scholar 

  20. Xu QR (1989) Status of laser welding abroad. Laser Optoelectron Progress 000(003):1–4

    Google Scholar 

  21. Liu C (1990) Application dynamics of several foreign welding methods. Aeronautical Manuf Technol 000(001):33–34. https://doi.org/10.16080/j.issn1671-833x.1990.01.013

    Article  Google Scholar 

  22. Verwaerde A, Fabbro R, Deshors G (1995) Experimental study of continuous CO2 laser welding at subatmospheric pressures. J Appl Phys 78:2981–2984. https://doi.org/10.1063/1.360046

    Article  Google Scholar 

  23. Katayama S, Kobayashi Y, Mizutani M, Matsunawa A (2001) Effect of vacuum on penetration and defects in laser welding. J Laser Appl 13:187–192. https://doi.org/10.2351/1.1404413

    Article  Google Scholar 

  24. Cao LJ, Zhang CM (2001) Effect of gas on the depth of melt and plasma behavior of laser welding. J Jiamusi Univ (Natural Science Edition) 19(2):171–174. https://doi.org/10.3969/j.issn.1008-1402.2001.02.018

    Article  Google Scholar 

  25. Mai T, Tay GH, Koh EW, Lim GC (2002) Laser vacuum welding of aluminium, kovar and ni-fe alloys for hermetic incapsulation of electronic components. Int Congress Appl Lasers Electro-Optics. https://doi.org/10.2351/1.5066132

  26. Bao HT, Liu JH, Liu K, Xu WF (2008) Low-power YAG laser welding process under vacuum condition. Aeronaut Manuf Technol 23:92–95. https://doi.org/10.16080/j.issn1671-833x.2008.23.008

    Article  Google Scholar 

  27. Bao HT, Liu JH, Liu K, Xu WF (2008) Effect of vacuum laser welding parameter on az31 magnesium alloy penetration and flaw analysis. Appl Laser 28(5):366–370. https://doi.org/10.3969/j.issn.1000-372X.2008.05.006

    Article  Google Scholar 

  28. Luo W, Dong WF, Yang HB, Xu CP, Tang ZK (2013) Development trend of high-power lasers. Laser Infrared 43(8). https://doi.org/10.3969/j.issn.1001-5078.2013.08.001

  29. Wang SL, Fang FZ (2017) High power laser and it development. Laser Optoelectron Progress 54:090005. https://doi.org/10.3788/LOP54.090005

    Article  Google Scholar 

  30. Katayama S, Yohei A, Mizutani M, Kawahito Y (2011) Development of deep penetration welding technology with high brightness laser under vacuum. Phys Procedia 12:75–80. https://doi.org/10.1016/j.phpro.2011.03.010

    Article  Google Scholar 

  31. Teichmann F, Müller S, Dilger K (2018) Investigations on dual laser beam welding of aluminum high pressure die castings at reduced ambient pressure. J Laser Appl 30. https://doi.org/10.2351/1.5040640

  32. Youhei A, Yousuke K, Hiroshi N, Koji N, Masami M, Seiji K (2014) Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser. Sci Technol Weld Join 19:324–332. https://doi.org/10.1179/1362171813y.0000000182

    Article  Google Scholar 

  33. Luo Y, Tang XH, Lu FG (2014) Experimental study on deep penetrated laser welding under local subatmospheric pressure. Int J Adv Manuf Technol 73:699–706. https://doi.org/10.1007/s00170-014-5870-z

    Article  Google Scholar 

  34. Luo Y, Tang X, Lu F, Chen Q, Cui H (2014) Effects of welding parameters on bead formation of laser welding under subatmospheric pressures. Chin J Lasers 41:102–107

    Google Scholar 

  35. Li LQ, Peng GC, Wang JD, Gong JF, Li HZ (2018) Experimental study on weld formation of inconel 718 with fiber laser welding under reduced ambient pressure. Vacuum 151:140–147. https://doi.org/10.1016/j.vacuum.2018.02.008

    Article  Google Scholar 

  36. Sokolov M, Salminen A, Katayama S, Kawahito Y (2015) Reduced pressure laser welding of thick section structural steel. J Mater Process Technol 219:278–285. https://doi.org/10.1016/j.jmatprotec.2014.12.026

    Article  Google Scholar 

  37. Schneider A, Gumenyuk A, Rethmeier M (2015) Mobile vacuum in pocket format mobile local low-pressure cap for high power laser beam welding of thick materials. Laser Tech J 4:43–46

    Article  Google Scholar 

  38. Schneider A, Gumenyuk A, Rethmeier M. (2015) Laser beam welding of thick materials under the influence of a local reduced ambient pressure. 3rd International Conference in Africa and Asia on Welding and 107-115.

  39. Luo Y, Tang X, Lu F, Chen Q, Cui H (2015) Spatial distribution characteristics of plasma plume on attenuation of laser radiation under subatmospheric pressure. Appl Opt 54:1090–1096. https://doi.org/10.1364/AO.54.001090

    Article  Google Scholar 

  40. Jiang M (2015) Study on the characteristics of plasma in laser welding under vacuum conditions. Dissertation, Harbin Institute of Technology.

  41. Peng CG. (2015) Laser welding characteristics of aluminum and nickel-base alloy under vacuum environment. Harbin Inst Technol.

  42. Luo Y (2015) Research on plasma plume and molten pool behavior in fiber laser welding under subatmospheric pressure. Dissertation, Shanghai Jiaotong University.

  43. Reisgen U, Olschok S, Jakobs S, Turner C (2016) Laser beam welding under vacuum of high grade materials. Weld World 60:403–413. https://doi.org/10.1007/s40194-016-0302-3

    Article  Google Scholar 

  44. Elmer JWVJ, Carlton HD (2016) The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel. Weld J 95(11):419–430

    Google Scholar 

  45. Reisgen U, Olschok S, Holtum N (2019) Influencing the electrical properties of laser beam vacuum-welded cu-al mixed joints. J Laser Appl 31:022406. https://doi.org/10.2351/1.5096093

    Article  Google Scholar 

  46. Teichmann F, Müller S, Dilger K (2018) On the occurrence of weld bead porosity during laser vacuum welding of high pressure aluminium die castings. Procedia CIRP 74:438–441. https://doi.org/10.1016/j.procir.2018.08.163

    Article  Google Scholar 

  47. Köhler M, Tóth T, Kreybohm A, Hensel J, Dilger K (2020) Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beam welding. J Manuf Mater Process 4. https://doi.org/10.3390/jmmp4020040

  48. Katayama S, Ido R, Nishimoto K, Mizutani M, Mizutani Y (2018) Full penetration welding of thick high tensile strength steel plate with high-power disk laser in low vacuum. Weld Int 32:289–302. https://doi.org/10.1080/09507116.2017.1346776

    Article  Google Scholar 

  49. Jiang M, Tao W, Chen YB, Li FK (2019) Comparison of processing window in full penetration laser welding of thick high-strength steel under atmosphere and sub-atmosphere. Opt Laser Technol 109:449–455. https://doi.org/10.1016/j.optlastec.2018.08.023

    Article  Google Scholar 

  50. Han XX, Tang XH, Wang TG, Shao CD, Lu FG, Cui HC (2018) Role of ambient pressure in keyhole dynamics based on beam transmission path method for laser welding on al alloy. Int J Adv Manuf Technol 99:1639–1651. https://doi.org/10.1007/s00170-018-2592-7

    Article  Google Scholar 

  51. Wang JM, Li LQ, Peng GC, Zou JP, Huang RS (2019) Microstructures and properties of weld bead of 10ni5crmov steel obtained with laser welding at vacuum. Chin J Lasers 46:66–74. https://doi.org/10.3788/CJL201946.0402005

    Article  Google Scholar 

  52. PTR Strahltechnik GmbH. https://www.ptr-ebeam.com/en/machines/laser-welding-in-vacuum.html.

  53. Rominger V, Berger P, Hügel H (2019) Effects of reduced ambient pressure on spattering during the laser beam welding of mild steel. J Laser Appl 31:042016. https://doi.org/10.2351/1.5007186

    Article  Google Scholar 

  54. Peng GC, Li LQ, Wang JM, Xia HB, Meng SH, Gong JF (2020) Effect of subatmospheric pressures on weld formation and mechanical properties during disk laser welding of 5a06 aluminium alloy. J Mater Process Technol 277:116457

    Article  Google Scholar 

  55. Wang TG. (2019) Study on effect of plume behavior on weld formation and porosity in laser welding of al-alloy under reduce ambient pressure. Shanghai Jiaotong University.

  56. Jiang M, Chen X, Chen YB, Tao W (2019) Increasing keyhole stability of fiber laser welding under reduced ambient pressure. J Mater Process Technol 268:213–222. https://doi.org/10.1016/j.jmatprotec.2019.01.026

    Article  Google Scholar 

  57. Han XX (2019) Research on penetration depth and porosity defect mechanism in laser welding al-alumnium under subatmospheric pressures. Dissertation, Shanghai Jiaotong University.

  58. Wang JM, Peng GC, Li LQ, Si CJ, Meng SH, Gong JF (2019) 30 kw-level laser welding characteristics of 5a06 aluminum alloy thick plate under subatmospheric pressure. Opt Laser Technol 119:105668. https://doi.org/10.1016/j.optlastec.2019.105668

    Article  Google Scholar 

  59. Jiang M, Chen X, Chen YB, Tao W (2020) Mitigation of porosity defects in fiber laser welding under low vacuum. J Mater Process Technol 276:116385. https://doi.org/10.1016/j.jmatprotec.2019.116385

    Article  Google Scholar 

  60. Cai C, Peng GC, Li LQ, Chen YB, Qiao L (2014) Comparative study on laser welding characteristics of aluminium alloy under atmospheric and subatmospheric pressures. Sci Technol Weld Join 19:547–553. https://doi.org/10.1179/1362171814y.0000000223

    Article  Google Scholar 

  61. Köhler M, Tóth T, Kreybohm A, Hensel J, Dilger K Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beam welding. J Manuf Mater Process 4(2):4020040. https://doi.org/10.1016/j.jmatprotec.2019.116457

  62. Jiang M, Debroy T, Jiang M, Chen YB, Chen X, Tao W (2020) Enhanced penetration depth during reduced pressure keyhole-mode laser welding. Weld J 99:110s–123s. https://doi.org/10.29391/2020.99.011

    Article  Google Scholar 

  63. Chen X, Lei ZL, Chen YB, Han Y, Jiang M, Tian Z, Bi J, Lin SB (2020) Microstructure and tensile properties of Ti/Al dissimilar joint by laser welding-brazing at subatmospheric pressure. J Manuf Process 56:19–27. https://doi.org/10.1016/j.jmapro.2020.04.062

    Article  Google Scholar 

  64. Yang F, Guo X, Yao XY, Xia GJ, Chen P, Yan M, Long Y. (2021) The effect of laser beam oscillation on laser welding of 2219-T87 aluminum alloy under subatmospheric pressure. J Mater Proc Technol. under review.

  65. Abe Y, Mizutani M, Kawahito Y, Katayama S (2010) Deep penetration welding with high power laser under vacuum. Int Congress Appl Lasers Electro-Optics:648–653. https://doi.org/10.2351/1.5062094

  66. Katayama S, Abe Y, Mizutani M, Kawahito Y (2011) Deep penetration welding with high power laser under vacuum. 29th Int CongressAppl Lasers Electro-Optics.

  67. Reisgen U, Olschok S, Jakobs S, Holtum N (2018) Influence of the degree of dilution with laser beam vacuum-welded cu-al mixed joints on the electrical properties. Procedia CIRP 74:23–26. https://doi.org/10.1016/j.procir.2018.08.022

    Article  Google Scholar 

  68. Reisgen U, Olschok S, Longerich S (2010) Laser beam welding in vacuum - a comparison with electron beam welding. Weld Cut

  69. Jakobs S, Reisgen U (2015) Welding with the laser beam in vacuum. Laser Tech J 12:42–46. https://doi.org/10.1002/latj.201500014

    Article  Google Scholar 

  70. Reisgen U, Olschok S, Turner C (2017) Welding of thick plate copper with laser beam welding under vacuum. J Laser Appl 29(2):022402. https://doi.org/10.2351/1.4983165

    Article  Google Scholar 

  71. Francis JA, Holtum N, Olschok S, Roy MJ, Vasileiou AN, Jakobs S, Reisgen U, Smith MC (2019) Vacuum laser welding of sa508 steel. J Mater Process Technol 274:116269. https://doi.org/10.1016/j.jmatprotec.2019.116269

    Article  Google Scholar 

  72. Focus (2018) Laser welding under vacuum: Lava. https://www.focus-e-welding.de/laser-welding-under-vacuum/.

  73. Börner C, Dilger K, Rominger V, Harrer T, Krüssel T, Löwer T (2011) Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser. Int Congress Appl Lasers Electro-Optics:621–629. https://doi.org/10.2351/1.5062302

  74. Börner C, Krüssel T, Dilger K (2013) Process characteristics of laser beam welding at reduced ambient pressure. High-Power Laser Mater Proc: Lasers, Beam Delivery, Diagnostics, and Applications II 8603:86030M. https://doi.org/10.1117/12.2003858

    Article  Google Scholar 

  75. Li LQ, Peng GC, Wang JM, Gong JF, Meng SH (2019) Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures. Int J Heat Mass Transf 133:812–826. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.165

    Article  Google Scholar 

  76. Chen QT, Tang XH, Lu FG, Luo Y, Cui HC (2014) Study on the effect of laser-induced plasma plume on penetration in fiber laser welding under subatmospheric pressure. Int J Adv Manuf Technol 78:331–339. https://doi.org/10.1007/s00170-014-6634-5

    Article  Google Scholar 

  77. Pang SY, Hirano K, Fabbro R, Jiang T (2015) Explanation of penetration depth variation during laser welding under variable ambient pressure. J Laser Appl 27:022007. https://doi.org/10.2351/1.4913455

    Article  Google Scholar 

  78. Gao M, Kawahito Y, Kajii S (2017) Observation and understanding in laser welding of pure titanium at subatmospheric pressure. Opt Express 25:13539–13548. https://doi.org/10.1364/OE.25.013539

    Article  Google Scholar 

  79. Wang CM, Lei B, Jiang P, Xu X, Mi GY (2018) Numerical and experimental investigation of vacuum-assisted laser welding for dp590 galvanized steel lap joint without prescribed gap. Int J Adv Manuf Technol 94:4177–4185. https://doi.org/10.1007/s00170-017-1067-6

    Article  Google Scholar 

  80. Li QH, Pang SY, Huang AG, Liang LJ, Guo JQ, Wei PY (2020) Development of pressure-adjustable ground simulation device for laser welding process. J Netshape Form Eng 12:152–159. https://doi.org/10.3969/j.issn.1674-6457.2020.04.019

    Article  Google Scholar 

  81. Reisgen U, Olschok S, Jakobs S, Aachen D (2010) A comparison of electron beam welding with laser beam welding in vacuum. DVS 285:119–127

    Google Scholar 

  82. Guo S, Peng Y, Cui C, Zhou Q, Xu JQ, Zhu J (2019) Forming and tensile fracture characteristics of ti-6al-4v and t2 cu vacuum electron beam welded joints. Vacuum 165:311–319. https://doi.org/10.1016/j.vacuum.2019.04.018

    Article  Google Scholar 

  83. Liu CC, He JS (2016) Numerical analysis of fluid transport phenomena and spiking defect formation during vacuum electron beam welding of 2219 aluminium alloy plate. Vacuum 132:70–81. https://doi.org/10.1016/j.vacuum.2016.07.033

    Article  Google Scholar 

  84. Luo Y, Tang XH, Lu FG, Chen QT, Cui HC (2015) Effect of subatmospheric pressure on plasma plume in fiber laser welding. J Mater Process Technol 215:219–224. https://doi.org/10.1016/j.jmatprotec.2014.08.011

    Article  Google Scholar 

  85. Gong JF, Peng GC, Li LQ, Xia HB, Meng SH, Wang JM (2021) Effect of plasma plume produced by vacuum laser welding on energy transmission. Opt Laser Technol 136:106744. https://doi.org/10.1016/j.optlastec.2020.106744

    Article  Google Scholar 

  86. Peng GC, Li LQ, Xia HB, Gong JF (2018) Study on keyhole and melt flow behaviors of laser welding of aluminum under reduced ambient pressures. J Phys Conf Ser 1063:012071. https://doi.org/10.1088/1742-6596/1063/1/012071

    Article  Google Scholar 

  87. Tang XH, Deng SG, Lu FG, Cui HC, Luo Y (2018) Bead formation characteristics in laser welding of high-strength steel under subatmospheric pressures. Weld World 63:401–407. https://doi.org/10.1007/s40194-018-0647-x

    Article  Google Scholar 

  88. Shcheglov P (2012) Study of vapour-plasma plume during high power fiber laser beam influence on metals. Dissertation, Bundesanstalt für Materialforschung und-Prüfung (BAM).

  89. Jiang M, Tao W, Chen YB, Wang SL (2016) Characteristics of bead formation and plasma plume in fiber laser welding under vacuum. Chin J Lasers 43(4):0403010. https://doi.org/10.3788/cjl201643.0403010

    Article  Google Scholar 

  90. Wang TG, Tan XH, Han XX, Lu FG, Cui HC (2018) Factors influencing weld formation for laser welding of 5083 aluminum alloy in vacuum. Chin J Lasers 45:27–35. https://doi.org/10.3788/CJL201845.1102001

    Article  Google Scholar 

  91. Zhang RL, Tang XH, Xu LD, Lu FG, Cui HC (2020) Study of molten pool dynamics and porosity formation mechanism in full penetration fiber laser welding of al-alloy. Int J Heat Mass Transf 148:119089. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119089

    Article  Google Scholar 

Download references

Availability of data and materials

Not applicable

Funding

The authors gratefully acknowledge the support of the New Faculty Research Startup Fund of Guangxi University (grant number A3010051006).

Author information

Authors and Affiliations

Authors

Contributions

Fan Yang: Writing — review & editing. Guangjie Xia: Writing — original draft. Xing Guo: Writing — original draft. Canyang Chen: Writing — original draft, Picture curation. Yu Long: Supervision, Funding acquisition. Binghua Chen: Investigation. Jinglong Tang: Resources. Genyu Chen: Resources.

Corresponding author

Correspondence to Yu Long.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Written informed consents to participate were obtained from all the participants.

Consent for publication

Written informed consents for publication were obtained from all the participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xia, G., Guo, X. et al. Research progress of laser welding under subatmospheric pressure. Int J Adv Manuf Technol 116, 803–820 (2021). https://doi.org/10.1007/s00170-021-07488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07488-3

Keywords

Navigation