Skip to main content
Log in

Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a cutter partition-based tool orientation optimization algorithm that can identify and eliminate both local and rear gouging in five-axis machining. This algorithm is developed to generate smooth gouge-free tool paths for arbitrary free-form surfaces machined by general Automatically Programmed Tools (APT) cutters. The algorithm involves an iterative process of cutter projection to compute the gouge-free cutter positions. During each iteration, the cutter partition method is used to classify the cutting portion of the cutter, which in turn determines the gouging condition. Based on the classification, the algorithm applies an optimal gouge-avoidance strategy to minimize the size of tool orientation and position changes. The proposed algorithm can handle the combination of local and rear gouging (either separately or simultaneously), guarantee front edge cutting (avoiding damage to the cutter and surface), ensure a safety clearance between the rear edge of the cutter and the machined surface, and achieve minimal interruption to tool orientation and position from gouge avoidance. Simulation and cutting experiments confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jun CS, Cha K, Lee YS (2003) Optimizing tool orientations for 5-axis machining by configuration-space search method. Comput Aided Des 35:549–566. https://doi.org/10.1016/S0010-4485(02)00077-5

    Article  Google Scholar 

  2. Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39:841–852. https://doi.org/10.1016/j.cad.2007.04.003

    Article  Google Scholar 

  3. Lee YS (1997) Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Comput Des 29:507–521. https://doi.org/10.1016/s0010-4485(97)00002-x

    Google Scholar 

  4. Lee YS, Chang TC (1995) 2-Phase approach to global tool interference avoidance in 5-axis machining. Comput Des 27:715–729. https://doi.org/10.1016/0010-4485(94)00021-5

    MATH  Google Scholar 

  5. Rao A, Sarma R (2000) On local gouging in five-axis sculptured surface machining using flat-end tools. Comput Aided Des 32:409–420. https://doi.org/10.1016/S0010-4485(99)00105-0

    Article  Google Scholar 

  6. Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput Aided Des 42:641–654. https://doi.org/10.1016/j.cad.2010.04.002

    Article  Google Scholar 

  7. Tang TD (2014) Algorithms for collision detection and avoidance for five-axis NC machining: a state of the art review. CAD. Comput Aided Des 51:1–17. https://doi.org/10.1016/j.cad.2014.02.001

    Article  Google Scholar 

  8. Chen T, Ye P, Wang J (2005) Local interference detection and avoidance in five-axis NC machining of sculptured surfaces. Int J Adv Manuf Technol 25:343–349. https://doi.org/10.1007/s00170-003-1921-6

    Article  Google Scholar 

  9. Zhu L, Zheng G, Ding H, Xiong Y (2010) Global optimization of tool path for five-axis flank milling with a conical cutter. Comput Aided Des 42:903–910. https://doi.org/10.1016/j.cad.2010.06.005

    Article  Google Scholar 

  10. Choi BK, Kim DH, Jerard RB (1997) C-space approach to tool-path generation for die and mould machining. Comput Des 29:657–669. https://doi.org/10.1016/S0010-4485(97)00012-2

    Google Scholar 

  11. Lu J, Cheatham R, Jensen CG et al (2008) A three-dimensional configuration-space method for 5-axis tessellated surface machining. Int J Comput Integr Manuf 21:550–568. https://doi.org/10.1080/09511920701263313

    Article  Google Scholar 

  12. Choi BK, Park JW, Jun CS (1993) Cutter-location data optimization in 5-axis surface machining. Comput Des 25:377–386. https://doi.org/10.1016/0010-4485(93)90033-K

    MATH  Google Scholar 

  13. Mi Z, Yuan CM, Ma X, Shen LY (2017) Tool orientation optimization for 5-axis machining with C-space method. Int J Adv Manuf Technol 88:1243–1255. https://doi.org/10.1007/s00170-016-8849-0

    Article  Google Scholar 

  14. Zhiwei L, Hongyao S, Wenfeng G, Jianzhong F (2012) Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation. Int J Adv Manuf Technol 62:1191–1203. https://doi.org/10.1007/s00170-011-3851-z

    Article  Google Scholar 

  15. Balasubramaniam M, Laxmiprasad P, Sarma S, Shaikh Z (2000) Generating 5-axis NC roughing paths directly from a tessellated representation. Comput Aided Des 32:261–277. https://doi.org/10.1016/S0010-4485(99)00103-7

    Article  Google Scholar 

  16. Suthunyatanakit K, Bohez ELJ, Annanon K (2009) A new global accessibility algorithm for a polyhedral model with convex polygonal facets. Comput Aided Des 41:1020–1033. https://doi.org/10.1016/j.cad.2009.08.002

    Article  Google Scholar 

  17. Morishige K, Kase K, Takeuchi Y (1997) Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. Int J Adv Manuf Technol 13:393–400. https://doi.org/10.1007/BF01179033

    Article  Google Scholar 

  18. Jimenez P, Thomas F, Torras C (2001) 3D collision detection: a survey. Comput Graph 25:269–285

    Article  Google Scholar 

  19. Ho S, Sarma S, Adachi Y (2001) Real-time interference analysis between a tool and an environment. Comput Aided Des 33:935–947. https://doi.org/10.1016/S0010-4485(00)00117-2

    Article  Google Scholar 

  20. You DC-F, Chu C (1997) Tool-path verification in five-axis machining of sculptured surfaces. Int J Adv Manuf Technol 13:248–255. https://doi.org/10.1007/BF01179606

    Article  Google Scholar 

  21. Jensen CG, Red WE, Pi J (2002) Tool selection for five-axis curvature matched machining. Comput Des 34:251–266

    Google Scholar 

  22. Zhang W, Zhang YF, Ge QJ (2005) Interference-free tool path generation for 5-axis sculptured surface ´ zier motions of a flat-end cutter machining using rational Be. 43:4103–4124. https://doi.org/10.1080/00207540500168188

  23. Kiswanto G, Lauwers B, Kruth JP (2007) Gouging elimination through tool lifting in tool path generation for five-axis milling based on faceted models. Int J Adv Manuf Technol 32:293–309. https://doi.org/10.1007/s00170-005-0338-9

    Article  Google Scholar 

  24. Hansen A, Arbab F (1988) Fixed-axis tool positioning with built-in global interference checking for NC path generation. IEEE J Robot Autom 4:610–621. https://doi.org/10.1109/56.9299

    Article  Google Scholar 

  25. Gray PJ, Bedi S, Ismail F (2003) Rolling ball method for 5-axis surface machining. Comput Aided Des 35:347–357. https://doi.org/10.1016/S0010-4485(03)00141-6

    Article  Google Scholar 

  26. Gray PJ, Ismail F, Bedi S (2004) Graphics-assisted rolling ball method for 5-axis surface machining. Comput Aided Des 36:653–663. https://doi.org/10.1016/S0010-4485(03)00141-6

    Article  Google Scholar 

  27. Gray PJ, Bedi S, Ismail F (2005) Arc-intersect method for 5-axis tool positioning. Comput Aided Des 37:663–674. https://doi.org/10.1016/j.cad.2004.08.006

    Article  Google Scholar 

  28. Hosseinkhani Y, Akbari J, Vafaeesefat A (2007) Penetration-elimination method for five-axis CNC machining of sculptured surfaces. Int J Mach Tools Manuf 47:1625–1635. https://doi.org/10.1016/j.ijmachtools.2006.11.002

    Article  Google Scholar 

  29. Ilushin O, Elber G, Wein R, Halperin D (2004) Precise global collision detection in multi-axis NC-machining. CAD Comput Aided Des 1:233–242

    Article  MATH  Google Scholar 

  30. Wein RON, Ilushin O, Elber G, Halperin DAN (2005) Continuous path verification in multi-axis NC-machining. Int J Comput Geom Appl 15:351–377

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang QH, Li JR, Zhou RR (2006) Graphics-assisted approach to rapid collision detection for multi-axis machining. Int J Adv Manuf Technol 30:853–863. https://doi.org/10.1007/s00170-005-0127-5

    Article  Google Scholar 

  32. Wang Q-H, Li J-R, Gong H-Q (2007) Graphics-assisted cutter orientation correction for collision-free five-axis machining. Int J Prod Res 45:2875–2894. https://doi.org/10.1080/00207540600767798

    Article  Google Scholar 

  33. Bi Q, Wang Y, Ding H (2010) A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter. Int J Prod Res 48:1105–1124. https://doi.org/10.1080/00207540802570685

    Article  Google Scholar 

  34. Kruth J, Lauwers B, Klewais P, Dejonghe P (1999) NC-postprocessing and NC-simulation for five-axis milling operations with automatic collision avoidance. Int J Manuf Sci Technol 1:12–18

    Google Scholar 

  35. Tang TD, Bohez ELJ, Koomsap P (2007) The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining. Comput Aided Des 39:1012–1024. https://doi.org/10.1016/j.cad.2007.06.004

    Article  Google Scholar 

  36. Li H, Feng H-Y (2004) Efficient five-axis machining of free-form surfaces with constant scallop height tool paths. Int J Prod Res 42:2403–2417. https://doi.org/10.1080/00207540310001652905

    Article  MATH  Google Scholar 

  37. Lauwers B, Dejonghe P, Kruth JP (2003) Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Comput Aided Des 35:421–432. https://doi.org/10.1016/S0010-4485(02)00045-3

    Article  Google Scholar 

  38. Monies F, Mousseigne M, Redonnet J-M, Rubio * W (2004) Determining a collision-free domain for the tool in five-axis machining. Int J Prod Res 42:4513–4530. https://doi.org/10.1080/00207540410001717290

    Article  MATH  Google Scholar 

  39. Li SX, Jerard RB (1994) 5-Axis machining of sculptured surfaces with a flat-end cutter. Comput Des 26:165–178. https://doi.org/10.1107/S0365110X53002015

    MATH  Google Scholar 

  40. Saito T, Takahashi T (1991) NC machining with G-buffer method. SIGGRAPH Comput Graph 25:207–216. https://doi.org/10.1145/127719.122741

    Article  Google Scholar 

  41. Jun CS, Kim DS, Park S (2002) A new curve-based approach to polyhedral machining. Comput Aided Des 34:379–389. https://doi.org/10.1016/S0010-4485(01)00110-5

    Article  Google Scholar 

  42. Lee SG, Kim HC, Yang MY (2008) Mesh-based tool path generation for constant scallop-height machining. Int J Adv Manuf Technol 37:15–22. https://doi.org/10.1007/s00170-007-0943-x

    Article  Google Scholar 

  43. Li XY, Lee CH, Hu PC, Sun YY (2017) Efficient cutter-facet model projection methods and applications to five-axis tool path computation. Submitted for publication in Computer Aided Design

Download references

Acknowledgments

We acknowledge the support of Dongfang Turbine Co., Ltd. for the machining experiments, and the help of Lixiong Gan, Fan Yang, and Changya Yan.

Funding

The authors gratefully acknowledge the support of the National Science and Technology Major Project of the Ministry of Science and Technology of China (2013ZX04007-041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Han Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lee, CH., Hu, P. et al. Cutter partition-based tool orientation optimization for gouge avoidance in five-axis machining. Int J Adv Manuf Technol 95, 2041–2057 (2018). https://doi.org/10.1007/s00170-017-1263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1263-4

Keywords

Navigation