Skip to main content
Log in

Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes an efficient algorithm to generate tool posture collision-free area for the whole free-form surface during five-axis CNC finishing period. The algorithm is consisted of two phases: sampling and interpolation. In the first phase, a few points are picked on the surface and the admissible area of tool posture is calculated at each point. The admissible area is a two-dimensional figure on the plane. Base on the assumption that the admissible area of adjacent surface points should transform continuously, so in the second phase, the admissible area of the sampling points are interpolated with cubic B-surface interpolation technique, forming an expression as ℚ(u, v), through which when the parameters u and v are assigned, the global collision-free area for the corresponding surface point can be easily calculated. The proposed algorithm is efficient because only a few surface points are needed to get the expression. The proposed algorithm is programmed and tested. Results show that the algorithm is relatively precise and efficient while considering the whole surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elber G, Cohen E (1999) A unified approach to verification in 5-axis freeform milling environments. Comput-Aided Des 31(13):795–804

    Article  MATH  Google Scholar 

  2. Chiou JCJ, Lee YS (2005) Optimal tool orientation for five-axis tool-end machining by swept envelope approach. J Manuf Sci Eng 127:801–810

    Article  Google Scholar 

  3. Fan J, Ball A (2008) Quadric method for cutter orientation in five-axis sculptured surface machining. Int J Mach Tool Manuf 48(7–8):788–801

    Article  Google Scholar 

  4. Gong H, Cao LX, Liu J (2008) Second order approximation of tool envelope surface for 5-axis machining with single point contact. Comput-Aided Des 40(5):604–615

    Article  Google Scholar 

  5. Gong H, Fang FZ, Hu XT, Cao LX, Liu J (2010) Optimization of tool positions locally based on the BCELTP for 5-axis machining of free-form surfaces. Comput-Aided Des 42(6):558–570

    Article  Google Scholar 

  6. Yoon JH (2003) Tool tip gouging avoidance and optimal tool positioning for 5-axis sculptured surface machining. Int J Prod Res 41(10):2125–2142

    Article  Google Scholar 

  7. Yoon JH, Pottmann H, Lee YS (2003) Locally optimal cutting positions for 5-axis sculptured surface machining. Comput-Aided Des 35(1):69–81

    Article  Google Scholar 

  8. Choi BK, Jun CS (1989) Ball-end cutter interference avoidance in NC machining of sculptured surfaces. Comput-Aided Des 21(6):371–378

    Article  MATH  Google Scholar 

  9. Schntzer K, Stroh C, Schulz H (2010) C-Space based approach for the calculation of toolpaths for freeform surfaces in B-Spline description. CIRP Ann Manuf Technol 59(1):421–424

    Article  Google Scholar 

  10. Seiler A, Balendran V, Sivayoganathan K (1997) Tool interference detection and avoidance based on offset nets. Int J Mach Tool Manuf 37(5):717–722

    Article  Google Scholar 

  11. Shen HY, Fu JZ, Chen ZC, Fan YQ (2010) Generation of offset surface for tool path in NC machining through level set methods. Int J Adv Manuf Technol 46(9–12):1043–1047

    Article  Google Scholar 

  12. Balasubramaniam M, Laxmiprasad P, Sarma S, Shaikh Z (2000) Generating 5-axis NC roughing paths directly from a tessellated representation. Comput-Aided Des 32(4):261–277

    Article  Google Scholar 

  13. Gray P, Bedi S, Ismail F (2003) Rolling ball method for 5-axis surface machining. Comput-Aided Des 35(4):347–357

    Article  Google Scholar 

  14. Gray PJ, Ismail F, Bedi S (2004) Graphics-assisted rolling ball method for 5-axis surface machining. Comput-Aided Des 36(7):653–663

    Article  Google Scholar 

  15. Lee YS, Ma Y, Jegadesh G (2000) Rolling-ball method and contour marching approach to identifying critical regions for complex surface machining. Comput Ind 41(2):163–180

    Article  Google Scholar 

  16. Ding S, Mannan MA, Poo AN (2004) Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces. Comput-Aided Des 36(13):1281–1294

    Article  Google Scholar 

  17. Tang TD, Bohez ELJ, Koomsap P (2007) The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining. Comput-Aided Des 39(11):1012–1024

    Article  Google Scholar 

  18. Woo TC (1994) Visibility maps and spherical algorithms. Comput-Aided Des 26(1):6–16

    Article  MATH  Google Scholar 

  19. Keeler T, Fedorkiw J, Ghali S (2007) The spherical visibility map. Comput-Aided Des 39(1):17–26

    Article  Google Scholar 

  20. Liu M, Liu YS, Ramani K (2009) Computing global visibility maps for regions on the boundaries of polyhedra using Minkowski sums. Comput-Aided Des 41(9):668–680

    Article  Google Scholar 

  21. Lee YS, Chang TC (1995) 2-Phase approach to global tool interference avoidance in 5-axis machining. Comput-Aided Des 27(10):715–729

    Article  MATH  Google Scholar 

  22. Lee YS (1997) Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Comput-Aided Des 29(7):507–521

    Article  Google Scholar 

  23. Wang QH, Li JR, Zhou RR (2006) Graphics-assisted approach to rapid collision detection for multi-axis machining. Int J Adv Manuf Technol 30(9):853–863

    Article  Google Scholar 

  24. Balasubramaniam M, Ho S, Sarma S, Adachi Y (2002) Generation of collision-free 5-axis tool paths using a haptic surface. Comput-Aided Des 34(4):267–279

    Article  Google Scholar 

  25. Balasubramaniam M, Sarma SE, Marciniak K (2003) Collision-free finishing toolpaths from visibility data. Comput-Aided Des 35(4):359–374

    Article  Google Scholar 

  26. Ho S, Sarma S, Adachi Y (2001) Real-time interference analysis between a tool and an environment. Comput-Aided Des 33(13):935–947

    Article  Google Scholar 

  27. Yang W, Feng J (2009) 2D shape morphing via automatic feature matching and hierarchical interpolation. Comput & Graph 33(3):414–423

    Article  Google Scholar 

  28. Sederberg TW, Greenwood E (1992) A physically based approach to 2-D shape blending. SIGGRAPH Comput Graph 26(2):25–34

    Article  Google Scholar 

  29. Mortara M, Spagnuolo M (2001) Similarity measures for blending polygonal shapes. Comput & Graph 25(1):13–27

    Article  Google Scholar 

  30. Morishige K, Kase K, Takeuchi Y (1997) Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. Int J Adv Manuf Technol 13(6):393–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Hongyao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhiwei, L., Hongyao, S., Wenfeng, G. et al. Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation. Int J Adv Manuf Technol 62, 1191–1203 (2012). https://doi.org/10.1007/s00170-011-3851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3851-z

Keyword

Navigation