Skip to main content
Log in

Experimental and numerical determination of forming limit diagram for 1010 steel sheet: a crystal plasticity approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper focuses on the study of 1010 steel sheet formability from a crystal plasticity viewpoint. The study is divided into experimental and numerical parts. In the experimental section, the initial texture of the sheet is measured through x-ray diffraction technique. Also, the stress-strain behaviour and FLD of the material are determined by performing simple tension and hemi-spherical punch tests, respectively. The presented experimental data provides the complete set of required input data for crystal plasticity simulation of 1010 steel sheet behaviour. In the numerical section, the rate dependent crystal plasticity model along with the power law hardening are employed in a user material (UMAT) subroutine to model the material behaviour. In order to determine FLD, second-order derivative of sheet thickness variations with respect to time is used as necking criterion. It is observed that the predicted FLD is in good agreement with the experimental curve. Finally, some points to further improve FLD prediction accuracy are remarked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dilmec M, Halkaci H, Ozturk F, Livatyali H, Yigit O (2013) Effects of sheet thickness and anisotropy on forming limit curves of AA2024-T4. Int J Adv Manuf Technol 67(9–12):2689–2700

    Article  Google Scholar 

  2. Ghazanfari A, Assempour A (2012) Calibration of forming limit diagrams using a modified Marciniak–Kuczynski model and an empirical law. Mater Des 34(0):185–191

    Article  Google Scholar 

  3. Abed-Meraim F, Balan T, Altmeyer G (2014) Investigation and comparative analysis of plastic instability criteria: application to forming limit diagrams. Int J Adv Manuf Technol 71(5–8):1247–1262

    Article  Google Scholar 

  4. Ahmadi S, Eivani A, Akbarzadeh A (2009) Experimental and analytical studies on the prediction of forming limit diagrams. Comput Mater Sci 44(4):1252–1257

    Article  Google Scholar 

  5. Hashemi R, Faraji G, Abrinia K, Dizaji A (2010) Application of the hydroforming strain- and stress-limit diagrams to predict necking in metal bellows forming process. Int J Adv Manuf Technol 46(5–8):551–561

    Article  Google Scholar 

  6. Lademo O-G, Pedersen K, Berstad T, Furu T, Hopperstad O (2008) An experimental and numerical study on the formability of textured AlZnMg alloys. Eur J Mech A-Solid 27(2):116–140

    Article  MATH  Google Scholar 

  7. Knockaert R, Chastel Y, Massoni E (2001) Experimental and numerical determination of texture evolution during deep drawing tests. J Mater Process Technol 110(3):300–311

    Article  Google Scholar 

  8. Yang M, Dong X, Zhou R, Cao J (2010) Crystal plasticity-based forming limit prediction for FCC materials under non-proportional strain-path. Mater Sci Eng A 527(24–25):6607–6613

    Article  Google Scholar 

  9. Palumbo G, Sorgente D, Tricarico L (2010) A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test. Mater Des 31(3):1308–1316

    Article  Google Scholar 

  10. Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity α-titanium: experimental characterization and constitutive modeling. Int J Plast 26(4):516–532

    Article  MATH  Google Scholar 

  11. Steglich D, Jeong Y, Andar M, Kuwabara T (2012) Biaxial deformation behaviour of AZ31 magnesium alloy: Crystal-plasticity-based prediction and experimental validation. Int J Solids Struct 49(25):3551–3561

    Article  Google Scholar 

  12. Hoc T, Rey C, Raphanel J (2001) Experimental and numerical analysis of localization during sequential test for an IF-Ti steel. Acta Mater 49(10):1835–1846

    Article  Google Scholar 

  13. Salari M, Akbarzadeh A (2007) Effect of microstructural inhomogeneities on texture evolution in 90-10 Brass sheets. J Mater Process Technol 182(1):440–444

    Article  Google Scholar 

  14. Kolahi A, Akbarzadeh A, Barnett M (2009) Electron back scattered diffraction (EBSD) characterization of warm rolled and accumulative roll bonding (ARB) processed ferrite. J Mater Process Technol 209(3):1436–1444

    Article  Google Scholar 

  15. Tóth LS, Beausir B, Orlov D, Lapovok R, Haldar A (2012) Analysis of texture and R value variations in asymmetric rolling of IF steel. J Mater Process Technol 212(2):509–515

    Article  Google Scholar 

  16. Zhuang W, Wang S, Lin J, Balint D, Hartl C (2012) Experimental and numerical investigation of localized thinning in hydroforming of micro-tubes. Eur J Mech A-Solid 31(1):67–76

    Article  MATH  Google Scholar 

  17. Zhuang W, Wang S, Cao J, Lin J, Hartl C (2010) Modelling of localised thinning features in the hydroforming of micro-tubes using the crystal-plasticity FE method. Int J Adv Manuf Technol 47(9–12):859–865

    Article  Google Scholar 

  18. Signorelli J, Serenelli M, Bertinetti M (2012) Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet. J Mater Process Technol 212(6):1367–1376

    Article  Google Scholar 

  19. Green D, Neale K, MacEwen S, Makinde A, Perrin R (2004) Experimental investigation of the biaxial behaviour of an aluminum sheet. Int J Plast 20(8–9):1677–1706

    Article  MATH  Google Scholar 

  20. Chiba R, Takeuchi H, Kuroda M, Hakoyama T, Kuwabara T (2013) Theoretical and experimental study of forming-limit strain of half-hard AA1100 aluminium alloy sheet. Comput Mater Sci 77(0):61–71

    Article  Google Scholar 

  21. Narayanasamy R, Ravindran R, Manonmani K, Satheesh J (2009) A crystallographic texture perspective formability investigation of aluminium 5052 alloy sheets at various annealing temperatures. Mater Des 30(5):1804–1817

    Article  Google Scholar 

  22. Savoie J, Jain M, Carr A, Wu P, Neale K, Zhou Y, Jonas J (1998) Predictions of forming limit diagrams using crystal plasticity models. Mater Sci Eng A 257(1):128–133

    Article  Google Scholar 

  23. Wu P, Neale K, Giessen E, Jain M, MacEwen S, Makinde A (1998) Crystal plasticity forming limit diagram analysis of rolled aluminum sheets. Metall and Mater Trans A 29(2):527–535

    Article  Google Scholar 

  24. Nakamachi E, Tam N, Morimoto H (2007) Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models. Int J Plast 23(3):450–489

    Article  MATH  Google Scholar 

  25. Xu L, Barlat F, Ahn D (2010) Constitutive modeling of ferritic stainless steel. Int J Mater Form 3(2):135–145

    Article  Google Scholar 

  26. Hoffmann T, Bertram A, Shim S, Tischler J, Larson B (2010) Experimental identification and validation of a crystal plasticity model for a low carbon steel on different length scales. Int J Mater Form 3(1):65–68

    Article  Google Scholar 

  27. Ramos GC, Stout M, Bolmaro R, Signorelli J, Turner P (2010) Study of a drawing-quality sheet steel. I: stress/strain behaviors and lankford coefficients by experiments and micromechanical simulations. Int J Solids Struct 47(17):2285–2293

    Article  MATH  Google Scholar 

  28. Ramos GC, Stout M, Bolmaro R, Signorelli J, Serenelli M, Bertinetti M, Turner P (2010) Study of a drawing- quality sheet steel. II: Forming-limit curves by experiments and micromechanical simulations. Int J Solids Struct 47(17):2294–2299

    Article  MATH  Google Scholar 

  29. Randle V, Engler O (2000) Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Taylor & Francis

  30. Khan A, Huang S (1995) Continuum Theory of Plasticity. Wiley-Interscience, New York

    MATH  Google Scholar 

  31. Hill R, Rice J (1972) Constitutive analysis of elastic-plastic crystals at arbitrary strain. J Mech Phys Solids 20(6):401–413

    Article  MATH  Google Scholar 

  32. Marciniak Z, Kuczyński K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9(9):609–620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Assempour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajian, M., Assempour, A. Experimental and numerical determination of forming limit diagram for 1010 steel sheet: a crystal plasticity approach. Int J Adv Manuf Technol 76, 1757–1767 (2015). https://doi.org/10.1007/s00170-014-6339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6339-9

Keywords

Navigation