Skip to main content
Log in

Crystal plasticity forming limit diagram analysis of rolled aluminum sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Numerical simulations of forming limit diagrams (FLDs) are performed based on a rate-sensitive polycrystal plasticity model together with the Marciniak-Kuczynski (M-K) approach. Sheet necking is initiated from an initial imperfection in terms of a narrow band. The deformations inside and outside the band are assumed to be homogeneous, and conditions of compatibility and equilibrium are enforced across the band interfaces. Thus, the polycrystal model needs only to be applied to two polycrystalline aggregates, one inside and one outside the band. Each grain is modeled as an fcc crystal with 12 distinct slip systems. The response of an aggregate comprised of many grains is based on an elastic-viscoplastic Taylor-type polycrystal model. With this formulation, the effects of initial imperfection intensity and orientation, initial distribution of grain orientations, crystal elasticity, strain-rate sensitivity, single slip hardening, and latent hardening on the FLD can be assessed. The predicted FLDs are compared with experimental data for the following rolled aluminum alloy sheets: AA5754-0-A, AA5754-0-B, AA6111-T4-A, AA6111-T4-C, and AA6111-T4-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Marciniak and K. Kuczynski: Int. J. Mech. Sci., 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  2. K.S. Chan: in Forming Limit Diagrams: Concepts, Methods and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 73–110.

    Google Scholar 

  3. G. Ferron and A. Molinari: in Forming Limit Diagrams: Concepts, Methods and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 111–51.

    Google Scholar 

  4. J.W. Hutchinson and K.W. Neale: in Mechanics of Sheet Metal Forming, K.P. Koistinen and N.-M. Wang, eds., Plenum Press, New York, NY, 1978, pp. 269–85.

    Google Scholar 

  5. J.R. Rice and S. Stören: J. Mech. Phys. Solids, 1978, vol. 23, pp. 421–41.

    Google Scholar 

  6. J.L. Bassani, J.W. Hutchinson, and K.W. Neale: in Metal Forming Plasticity, H. Lippman, ed., Springer-Verlag, Berlin, 1979, pp. 1–13.

    Google Scholar 

  7. K.W. Neale and E. Chater: Int. J. Mech. Sci., 1980, vol. 22, pp. 563–74.

    Article  Google Scholar 

  8. F. Barlat: Mater. Sci. Technol., 1987, vol. 91, pp. 55–72.

    CAS  Google Scholar 

  9. F. Barlat: in Forming Limit Diagrams: Concepts, Methods and Applications, R.H. Wagoner, K.S. Chan, and S.P. Keeler, eds., TMS, Warrendale, PA, 1989, pp. 275–301.

    Google Scholar 

  10. F. Barlat and O. Richmond: Mater. Sci. Technol., 1987, vol. 95, pp. 15–29.

    Google Scholar 

  11. D.J. Lege, F. Barlat, and J.C. Brem: Int. J. Mech. Sci., 1989, vol. 31, pp. 549–63.

    Article  Google Scholar 

  12. Y. Zhou and K.W. Neale: Int. J. Mech. Sci., 1995, vol. 37, pp. 1–20.

    Article  Google Scholar 

  13. Y. Qiu, K.W. Neale, A. Makinde, and S.R. MacEwen: in Simulation of Materials Processing: Theory, Methods and Applications, S. Shen and P.R. Dawson, eds., Balkema, Rotterdam, 1995, pp. 327–31.

    Google Scholar 

  14. R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923–53.

    Article  CAS  Google Scholar 

  15. V. Tvergaard and A. Needleman: Proc. R. Soc. London, 1993, vol. A443, pp. 547–62.

    Google Scholar 

  16. P.D. Wu, K.W. Neale, and E. van der Giessen: Proc. R. Soc. London, 1997, vol. A453, pp. 1831–1848.

    Google Scholar 

  17. D. Peirce, C.F. Shih, and A. Needleman: Computers and Structures, 1982, vol. 18, pp. 875–87.

    Article  Google Scholar 

  18. E. Van der Giessen and K.W. Neale: Comp. Meth. Appl. Mech. Eng., 1993, vol. 103, pp. 291–313.

    Article  Google Scholar 

  19. D.V. Wilson, W.T. Roberts, and P.M.B. Rodrigues: Metall. Trans. A, 1981, vol. 12A, pp. 1595–1611.

    Google Scholar 

  20. F. Barlat, A. Barata da Roberts, and J.M. Jalinier: J. Mater. Sci., 1984, vol. 19, pp. 4133–37.

    Article  Google Scholar 

  21. F. Barlat and J.M. Jalinier: J. Mater. Sci., 1985, vol. 20, pp. 3385–99.

    Article  CAS  Google Scholar 

  22. P. Ratchev, P. Van Houtte, B. Verlinden, P. De Smet, P. Neutjens, R. Baartman, and P. Drent: Text. Microstr., 1994, vol. 22, pp. 219–31.

    Article  Google Scholar 

  23. A.K. Ghosh and S.S. Hecker: Metall. Trans., 1974, vol. 5, pp. 2161–64.

    CAS  Google Scholar 

  24. L.S. Toth, J. Hirsch, and P. Van Houtte: Int. J. Mech. Sci., 1996, vol. 38, pp. 1117–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P.D., Neale, K.W., Van Der Giessen, E. et al. Crystal plasticity forming limit diagram analysis of rolled aluminum sheets. Metall Mater Trans A 29, 527–535 (1998). https://doi.org/10.1007/s11661-998-0134-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0134-x

Keywords

Navigation