Skip to main content
Log in

Strain path dependence of the FLC0 formability parameter in an interstitial free steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work aims at studying the influence of the strain path upon the FLC0 formability parameter, the root of the forming limit curves (FLC). The investigation was conducted in an interstitial free (IF) quality steel. The FLC0 parameter was evaluated in an intrinsic tensile test in near plane strain (NPS) condition, but following two strain paths. The first one being a uniaxial (proportional) path up to initial necking. The second (non-proportional) path corresponded to applying 15 % nominal plastic strain in one direction (near plane strain) followed by a second deformation applied in the orthogonal direction up to the rupture of the samples. A reduction in the limit strains corresponding to FLC0 in the non-proportional test has been observed. The forming limit stress curves (FLSC) and the critical values FLSD0 are also related to these trajectories. A simulation using finite element method (FEM) has been applied to analyze the evolution of stress and strain during the two paths, and the results have been found consistent for both proportional and non-proportional paths. Texture and surface roughness evolution of the sheet were also measured and related to the applied strain paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keeler SP (1994) J Mater Proc Tech 46:446

    Article  Google Scholar 

  2. Goodwin G (1968) SAE Technical Papers (680093). doi:10.4721/680093

  3. Meyers MA, Chawla KK (1999) Mechanical behavior of materials. Prentice Hall, Upper Saddle River-NJ

    MATH  Google Scholar 

  4. Schön CG (2013) Mecânica dos Materiais. Elsevier, Rio de Janeiro. (in Portuguese)

    Google Scholar 

  5. Zhao L, Soderby R, Sklad MP (1995) Int J Mech Sci 38(12):1307

    Article  Google Scholar 

  6. Hashemi R, Faraji G, Abrinia K, Disaji AF (2010) Int J Adv Manuf Tech 46:551

    Article  Google Scholar 

  7. Li F, Fu MW, Lin JP, Wang XN (2014) Int J Adv Manuf Tech 71:297

    Article  Google Scholar 

  8. Drewes EJ, Floßdorf FJ, Freier K (1995) Stahl & Eisen 115(4):85

    Google Scholar 

  9. Hosford WF, Duncan JL (1999) JOM 51(11):39

    Article  Google Scholar 

  10. Abed-Meraim F, Balan T, Altmeyer G (2014) Int J Adv Manuf Tech 71:1247

    Article  Google Scholar 

  11. Ghosh AK, Hecker SS (1974) Metall Trans 5(10):2161

    Article  Google Scholar 

  12. Wagoner RH (1980) Metall Trans A 11(1):165

    Article  MathSciNet  Google Scholar 

  13. Holmberg S, Enquist B, Thilderkvist P (2004) J Mater Proc Tech 145:72

    Article  Google Scholar 

  14. Xavier MD, Plaut RL, Schon̈ CG (2014) Mater Res 17(4):982

    Article  Google Scholar 

  15. Arrieux R (1995) J Mater Proc Tech 53:47

    Article  Google Scholar 

  16. Sing WM, Rao KP (1997) J Mater Proc Tech 67:201

    Article  Google Scholar 

  17. Stoughton TB (2000) Int J Mech Sci 42:1

    Article  MATH  Google Scholar 

  18. Chow CL, Yang XJ (2003) J Mater Proc Tech 133:304

    Article  Google Scholar 

  19. Hari Manoj Simha C, Grantab R, Worswick MJ (2007) Int J Solids Struct 44:8663

    Article  MATH  Google Scholar 

  20. Alsos HS, Hopperstad OS, Törnqvist R, Amdahl J (2008) Int J Solids Struct 45:2042

    Article  MATH  Google Scholar 

  21. Stoughton TB, Yoon JW (2012) Int J Solids Struct 49:3616

    Article  Google Scholar 

  22. Abushawashi Y, Xiao X, Astakhov V (2013) Int J Mech Sci 74:133

    Article  Google Scholar 

  23. Stoughton TB, Zhu X (2004) Int J Plasticity 20:1463

    Article  MATH  Google Scholar 

  24. Charca Ramos G, Stout M, Bolmaro RE, Signorelli JW, Turner P (2010) Int J Solids Struct 47:2285

    Article  MATH  Google Scholar 

  25. Charca Ramos G, Stout M, Bolmaro RE, Signorelli JW, Bertinetti MA, Turner P (2010) Int J Solids Struct 47:2294

    Article  MATH  Google Scholar 

  26. Serenelli MJ, Bertinetti MA, Signorelli JW (2011) Int J Solids Struct 48:1109

    Article  MATH  Google Scholar 

  27. Ma B, Tieu AK, Lu C, Jiang Z (2002) J Mater Proc Tech 130-131:450

    Article  Google Scholar 

  28. Nakamachi E, Xie CL, Harimoto M (2001) Int J Mech Sci 43:631

    Article  MATH  Google Scholar 

  29. Kubli W, Reissner J (1995) J Mater Proc Tech 50:292

    Article  Google Scholar 

  30. de Souza T, Rolfe BF (2010) Int J Mech Sci 52:1756

    Article  Google Scholar 

  31. Bressan JD, Cieto JD, Vieira FH, Bastos LSB, Muñoz Rojas PA (2010) Int J Mater Form 3 Suppl 1:231

    Article  Google Scholar 

  32. Galego E (2004) Desenvolvimento de programa computacional para tratamento de dados de textura pela técnica de difração de raios-X. Master’s thesis, Instituto de Pesquisas Energticas e Nucleares. IPEN/CNEN-SP, São Paulo

    Google Scholar 

  33. Tigrinho LMV, Chemin Filho RA, Marcondes PVP (2013) Int J Adv Manuf Tech 69:1017

    Article  Google Scholar 

  34. Uppaluri R, Reddy NV, Dixit PM (2011) Int J Mech Sci 53:365

    Article  Google Scholar 

  35. Keeler SP, Brazier WG (1977). In: Kochysnky M (ed). Union Carbide Co., New York, pp 571–530

  36. Abspoel M, Scholting ME, Droog JMM (2013) J Mater Proc Tech 213:759

    Article  Google Scholar 

  37. Liewald M, Held C, Schleich R (2009) Steel Res 80(4):275

    Google Scholar 

  38. Kaluza W, Kim I, Bleck W (2002) Adv Eng Mater 4(4):191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Geraldo Schön.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, M.D., de Lima, N.B., Plaut, R.L. et al. Strain path dependence of the FLC0 formability parameter in an interstitial free steel. Int J Adv Manuf Technol 80, 1077–1085 (2015). https://doi.org/10.1007/s00170-015-7103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7103-5

Keywords

Navigation