Skip to main content
Log in

Biomechanical comparison of three anatomic ACL reconstructions in a porcine model

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Different tunnel configurations have been used for double-bundle (DB) anterior cruciate ligament (ACL) reconstruction. However, controversy still exists as to whether three-tunnel DB with double-femoral tunnels and single-tibial tunnel (2F-1T) or with single-femoral tunnel and double-tibial tunnels (1F-2T) better restores intact knee biomechanics than single-bundle (SB) ACL reconstruction. The purpose was to compare the knee kinematics and in situ force in the grafts among SB and two types of three-tunnel DB ACL reconstructions performed in an anatomic fashion.

Methods

Twenty-four porcine knees were subjected to an 89-N anterior tibial load (simulated KT-1000 test) at 30°, 60°, and 90° of flexion and to a 4-Nm internal tibial torque and 7-Nm valgus torque (simulated pivot-shift test) at 30° and 60° of flexion. The resulting knee kinematics and in situ force in the ACL or replacement grafts were measured using a robotic system for (1) ACL-intact, (2) ACL-deficient, and (3) three ACL reconstructed knees: SB; DB 2F-1T; and DB 1F-2T.

Results

During the simulated pivot-shift test, the DB grafts more closely restored the in situ force in the intact ACL at low flexion angle than the SB graft. There were no significant differences in knee kinematics between SB and DB ACL reconstruction. The DB 2F-1T reconstruction did not show a significant difference in knee kinematics or in situ force when compared to the DB 1F-2T technique.

Conclusion

The in situ force in the ACL is better restored with an anatomic three-tunnel DB reconstruction in response to the simulated pivot-shift test at low flexion angle when compared to an anatomic SB reconstruction. Both three-tunnel DB ACL reconstructions performed in an anatomic fashion had similar biomechanical behavior. As long as it is performed anatomically, DB ACL reconstruction could be better alternative than SB ACL reconstruction, no matter which three-tunnel procedure, 2F-1T or 1F-2T, is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amis AA, Dawkins GP (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73:260–267

    PubMed  CAS  Google Scholar 

  2. Caborn DN, Chang HC (2005) Single femoral socket double-bundle anterior cruciate ligament reconstruction using tibialis anterior tendon: description of a new technique. Arthroscopy 21:1273e1–1273e8

    Article  Google Scholar 

  3. Colombet PD, Robinson JR (2008) Computer-assisted, anatomic, double-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:1152–1160

    Article  PubMed  Google Scholar 

  4. Conner CS, Perez BA, Morris RP, Buckner JW, Buford WL Jr, Ivey FM (2010) Three femoral fixation devices for anterior cruciate ligament reconstruction: comparison of fixation on the lateral cortex versus the anterior cortex. Arthroscopy 26:796–807

    Article  PubMed  Google Scholar 

  5. Cooley VJ, Deffner KT, Rosenberg TD (2001) Quadrupled semitendinosus anterior cruciate ligament reconstruction: 5-year results in patients without meniscus loss. Arthroscopy 17:795–800

    Article  PubMed  CAS  Google Scholar 

  6. Darcy SP, Kilger RH, Woo SL, Debski RE (2006) Estimation of ACL forces by reproducing knee kinematics between sets of knees: a novel noninvasive methodology. J Biomech 39:2371–2377

    Article  PubMed  Google Scholar 

  7. Dargel J, Koebke J, Bruggemann GP, Pennig D, Schmidt-Wiethoff R (2009) Tension degradation of anterior cruciate ligament grafts with dynamic flexion-extension loading: a biomechanical model in porcine knees. Arthroscopy 25:1115–1125

    Article  PubMed  Google Scholar 

  8. Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel DM (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament–injured knee. Am J Sports Med 33:335–346

    Article  PubMed  Google Scholar 

  9. Frank DA, Altman GT, Re P (2007) Hybrid anterior cruciate ligament reconstruction: introduction of a new technique for anatomic anterior cruciate ligament reconstruction. Arthroscopy 23:1354e1–1354e13545

    Article  Google Scholar 

  10. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR Jr (2003) Arthroscopic anterior cruciate ligament reconstruction: a meta-analysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2–11

    PubMed  Google Scholar 

  11. Fu FH, Shen W, Starman JS, Okeke N, Irrgang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction: a preliminary 2-year prospective study. Am J Sports Med 36:1263–1274

    Article  PubMed  Google Scholar 

  12. Fujie H, Livesay GA, Woo SL, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in situ forces in ligaments: a new methodology. J Biomech Eng 117:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Fujie H, Mabuchi K, Woo SL, Livesay GA, Arai S, Tsukamoto Y (1993) The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 115:211–217

    Article  PubMed  CAS  Google Scholar 

  14. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  15. Gadikota HR, Seon JK, Kozanek M, Oh LS, Gill TJ, Montgomery KD, Li G (2009) Biomechanical comparison of single-tunnel-double-bundle and single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 37:962–969

    Article  PubMed  Google Scholar 

  16. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint: anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  17. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15:741–749

    Article  PubMed  CAS  Google Scholar 

  18. Ho JY, Gardiner A, Shah V, Steiner ME (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:464–472

    Article  PubMed  Google Scholar 

  19. Hoher J, Kanamori A, Zeminski J, Fu FH, Woo SL (2001) The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction. Am J Sports Med 29:771–776

    PubMed  CAS  Google Scholar 

  20. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Horaguchi T, Saito A, Smolinski P, Fu FH (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    Article  PubMed  Google Scholar 

  21. Jarvela T, Paakkala T, Kannus P, Jarvinen M (2001) The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med 29:18–24

    PubMed  CAS  Google Scholar 

  22. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C (2009) Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy 25:767–776

    Article  PubMed  Google Scholar 

  23. Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639

    Article  PubMed  CAS  Google Scholar 

  24. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398

    Article  PubMed  Google Scholar 

  25. Kato Y, Ingham SJ, Kramer S, Smolinski P, Saito A, Fu FH (2010) Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surg Sports Traumatol Arthrosc 18:2–10

    Article  PubMed  Google Scholar 

  26. Kato Y, Ingham SJM, Linde-Rosen M, Smolinski P, Horaguchi T, Fu FH (2010) Biomechanics of the porcine triple bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18:20–25

    Article  PubMed  Google Scholar 

  27. Kim SJ, Jo SB, Kim TW, Chang JH, Choi HS, Oh KS (2009) A modified arthroscopic anterior cruciate ligament double-bundle reconstruction technique with autogenous quadriceps tendon graft: remnant-preserving technique. Arch Orthop Trauma Surg 129:403–407

    Article  PubMed  Google Scholar 

  28. Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y (2005) Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy 21:970–978

    Article  PubMed  Google Scholar 

  29. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    Article  PubMed  Google Scholar 

  30. Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL (1995) Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23:467–474

    Article  PubMed  CAS  Google Scholar 

  31. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability, graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock, 10 o’clock femoral tunnel placement, 2002. Richard O’Connor Award paper. Arthroscopy 19:297–304

    Article  PubMed  Google Scholar 

  32. Mae T, Shino K, Miyama T, Shinjo H, Ochi T, Yoshikawa H, Fujie H (2001) Single- versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy 17:708–716

    Article  PubMed  CAS  Google Scholar 

  33. Martins CAQ, Kropf EJ, Shen W, van Eck CF, Fu FH (2008) The concept of anatomic anterior cruciate ligament reconstruction. Oper Tech Sports Med 16:104–115

    Article  Google Scholar 

  34. Miura K, Woo SL, Brinkley R, Fu YC, Noorani S (2006) Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med 34:577–585

    Article  PubMed  Google Scholar 

  35. Miyatake S, Kondo E, Tohyama H, Kitamura N, Yasuda K (2010) Biomechanical evaluation of a novel application of a fixation device for bone-tendon-bone graft (EndoButton CL BTB) to soft-tissue grafts in anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 26:1226–1232

    Article  PubMed  Google Scholar 

  36. Morgan CD, Kalman VR, Grawl DM (1995) Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 11:275–288

    Article  PubMed  CAS  Google Scholar 

  37. Musahl V, Voos JE, O’Loughlin PF, Choi D, Stueber V, Kendoff D, Pearle AD (2010) Comparing stability of different single- and double-bundle anterior cruciate ligament reconstruction techniques: a cadaveric study using navigation. Arthroscopy 26:S41–S48

    Article  PubMed  Google Scholar 

  38. Nyland J, Larsen N, Burden R, Chang H, Caborn DNM (2009) Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration. Knee Surg Sports Traumatol Arthrosc 17:83–91

    Article  PubMed  CAS  Google Scholar 

  39. Odensten M, Gillquist J (1985) Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg Am 67:257–262

    PubMed  CAS  Google Scholar 

  40. Pederzini L, Adriani E, Botticella C, Tosi M (2000) Technical note: double tibial tunnel using quadriceps tendon in anterior cruciate ligament reconstruction. Arthroscopy 16:e9

    Article  PubMed  CAS  Google Scholar 

  41. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M, Zantop T (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35:228–234

    Article  PubMed  Google Scholar 

  42. Pujol N, Fong O, Karoubi M, Beaufils P, Boisrenoult P (2010) Anatomic double-bundle ACL reconstruction using a bone-patellar tendon-bone autograft: a technical note. Knee Surg Sports Traumatol Arthrosc 18:43–46

    Article  PubMed  Google Scholar 

  43. Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD (2005) Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy 21:1323–1329

    Article  PubMed  Google Scholar 

  44. Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360

    Article  PubMed  CAS  Google Scholar 

  45. Shen PH, Lien SB, Shen HC, Wang CC, Huang GS, Chao KH, Lee CH, Lin LC (2009) Comparison of different sized of bioabsorbable interference screws for anterior cruciate ligament reconstruction using bioabsorbable bead augmentation in a porcine model. Arthroscopy 25:1101–1107

    Article  PubMed  Google Scholar 

  46. Shen W, Forsythe B, Ingham SM, Honkamp NJ, Fu FH (2008) Application of the anatomic double-bundle reconstruction concept to revision and augmentation anterior cruciate ligament surgeries. J Bone Joint Surg Am 90:20–34

    Article  PubMed  Google Scholar 

  47. Siebold R, Dehler C, Ellert T (2008) Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:137–145

    Article  PubMed  Google Scholar 

  48. Sonnery-Cottet B, Chambat P (2006) Anatomic double bundle: a new concept in anterior cruciate ligament reconstruction using the quadriceps tendon. Arthroscopy 22:1249e1–1249e12494

    Google Scholar 

  49. Takeda Y, Sato R, Ogawa T, Fujii K, Naruse A (2009) In vivo magnetic resonance imaging measurement of tibiofemoral relation with different knee flexion angles after single- and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:733–741

    Article  PubMed  Google Scholar 

  50. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983

    Article  PubMed  Google Scholar 

  51. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84:907–914

    PubMed  Google Scholar 

  52. Woo SL, Moon DK, Miura K, Fu YC, Nguyen TD (2005) Basic Science of Ligament Healing: C. Anterior Cruciate Ligament Graft Biomechanics and Knee Kinematics. Sports Med Arthrosc Rev 13:161–169

    Article  Google Scholar 

  53. Woo SL, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91:78–84

    Article  PubMed  Google Scholar 

  54. Wu C, Noorani S, Vercillo F, Woo SL (2009) Tension patterns of the anteromedial and posterolateral grafts in a double-bundle anterior cruciate ligament reconstruction. J Orthop Res 27:879–884

    Article  PubMed  Google Scholar 

  55. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  56. Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  57. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

  58. Yasuda K, Ichiyama H, Kondo E, Miyatake S, Inoue M, Tanabe Y (2008) An in vivo biomechanical study on the tension-versus-knee flexion angle curves of 2 grafts in anatomic double-bundle anterior cruciate ligament reconstruction: effects of initial tension and internal tibial rotation. Arthroscopy 24:276–284

    Article  PubMed  Google Scholar 

  59. Yoo YS, Jeong WS, Shetty NS, Ingham SJM, Smolinski P, Fu FH (2010) Changes in ACL length at different knee flexion angles: an in vivo biomechanical study. Knee Surg Sports Traumatol Arthrosc 18:292–297

    Article  PubMed  Google Scholar 

  60. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu F (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992

    Article  PubMed  Google Scholar 

  61. Zantop T, Wellmann M, Fu FH, Petersen W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction. Anatomic and radiographic findings. Am J Sports Med 36:65–73

    Article  PubMed  Google Scholar 

  62. Zaffagnini S, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy 26:546–554

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debandi, A., Maeyama, A., Lu, S. et al. Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc 19, 728–735 (2011). https://doi.org/10.1007/s00167-010-1338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1338-3

Keywords

Navigation