Skip to main content
Log in

Biomechanics of the porcine triple bundle anterior cruciate ligament

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Several species of animals are used as a model to study human anterior cruciate ligament (ACL) reconstruction. In many animals, three bundles were clearly discernible during dissection in the ACL. However, there are few reports about the biomechanical role of each bundle in the porcine knee. The purpose of this study is to investigate the role of each of the three bundles in the porcine knee, especially the intermediate bundle. Ten porcine knees were tested using a robotic/universal forcemoment sensor system. This system applied anterior loading of 89 N at 30°, 60° and 90° of flexion, and a combined 7 Nm valgus and 4 Nm internal tibial torque at 30° and 60° of flexion before and after each bundle was selectively cut. The in situ force (N) for each bundle of the ACL was measured. Both intermediate (IM) bundle and postero-lateral (PL) bundle had significantly lower in situ force than the antero-medial (AM) bundle in anterior loading. The IM and PL bundles carried a larger proportion of the force under the torsional loads than the anterior loads. But IM bundle had a significant lower in situ force during the combined torque at 60° of knee flexion, when compared intact ACL. In summary, IM bundle has a subordinate role to the AM and PL bundles. AM bundle is more dominant than IM and PL bundles. The porcine knee is a suitable model for ACL studies, especially for AP stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miyasaka KC, Daniel DM, Shore ML, Hirsham P (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3–8

    Google Scholar 

  2. Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renstrom PA, Nichols CE (1997) The strain behavior of the anterior cruciate ligament during squatting and active flexion–extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25:823–829

    Article  CAS  PubMed  Google Scholar 

  3. Beynnon BD, Risberg MA, Tjomsland O, Ekeland A, Fleming BC, Peura GD, Johnson RJ (1997) Evaluation of knee joint laxity and the structural properties of the anterior cruciate ligament graft in the human. A case report. Am J Sports Med 25:203–206

    Article  CAS  PubMed  Google Scholar 

  4. Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47

    Article  PubMed  Google Scholar 

  5. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992

    Article  PubMed  Google Scholar 

  6. Belisle AL, Bicos J, Geaney L, Andersen MH, Obopilwe E, Rincon L, Nyland J, Morgan C, Caborn DN, Arciero RA (2007) Strain pattern comparison of double- and single-bundle anterior cruciate ligament reconstruction techniques with the native anterior cruciate ligament. Arthroscopy 23:1210–1217

    PubMed  Google Scholar 

  7. Fu FH, Shen W, Starman JS, Okeke N, Irrgang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction: a preliminary 2-year prospective study. Am J Sports Med 36:1263–1274

    Article  PubMed  Google Scholar 

  8. Sasaki SU, Mota e Albuquerque RF, Pereira CA, Gouveia GS, Vilela JC, Alcaras Fde L (2008) An in vitro biomechanical comparison of anterior cruciate ligament reconstruction: single bundle versus anatomical double bundle techniques. Clinics (Sao Paulo) 63:71–76

    Google Scholar 

  9. Yasuda K, Kondo E, Ichiyama H, Kitamura N, Tanabe Y, Tohyama H, Minami A (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20:1015–1025

    PubMed  Google Scholar 

  10. Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL (2003) The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res 21:708–715

    Article  PubMed  Google Scholar 

  11. Buma P, Kok HJ, Blankevoort L, Kuijpers W, Huiskes R, Van Kampen A (2004) Augmentation in anterior cruciate ligament reconstruction-a histological and biomechanical study on goats. Int Orthop 28:91–96

    Article  CAS  PubMed  Google Scholar 

  12. Ekdahl M, Nozaki M, Ferretti M, Tsai A, Smolinski P, Fu FH (2009) The effect of tunnel placement on bone-tendon healing in anterior cruciate ligament reconstruction in a goat model. Am J Sports Med (PreView June 9). doi:2010.1177/0363546509332503

  13. Zantop T, Ferretti M, Bell KM, Brucker PU, Gilbertson L, Fu FH (2008) Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: intra-articular study in a goat model. Am J Sports Med 36:2158–2166

    Article  PubMed  Google Scholar 

  14. Dargel J, Schmidt-Wiethoff R, Heck M, Bruggemann GP, Koebke J (2008) Comparison of initial fixation properties of sutured and nonsutured soft tissue anterior cruciate ligament grafts with femoral cross-pin fixation. Arthroscopy 24:96–105

    Article  PubMed  Google Scholar 

  15. Ferretti A, Conteduca F, Labianca L, Monaco E, De Carli A (2005) Evolgate fixation of doubled flexor graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic loading. Am J Sports Med 33:574–582

    Article  PubMed  Google Scholar 

  16. Fleming BC, Carey JL, Spindler KP, Murray MM (2008) Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res 26:1500–1505

    Article  PubMed  Google Scholar 

  17. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Horaguchi T, Saito A, Smolinski P, Fu FH (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594

    Article  PubMed  Google Scholar 

  18. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH (2007) An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osseointegration. Am J Sports Med 35:962–971

    Article  PubMed  Google Scholar 

  19. Yasuda K, Sakai T, Kondo E, Onodera S (2007) Bleeding from the bone marrow enhances remodeling of the in situ frozen-thawed anterior cruciate ligament. Clin Biomech (Bristol, Avon) 22:941–949

    Article  Google Scholar 

  20. Petersen W, Lenschow S, Weimann A, Strobel MJ, Raschke MJ, Zantop T (2006) Importance of femoral tunnel placement in double-bundle posterior cruciate ligament reconstruction: biomechanical analysis using a robotic/universal force-moment sensor testing system. Am J Sports Med 34:456–463

    Article  PubMed  Google Scholar 

  21. Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2007) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227

    Article  PubMed  Google Scholar 

  22. Fujie H, Livesay GA, Fujita M, Woo SL (1996) Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech 29:1577–1585

    CAS  PubMed  Google Scholar 

  23. Fujie H, Livesay GA, Woo SL, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in situ forces in ligaments: a new methodology. J Biomech Eng 117:1–7

    Article  CAS  PubMed  Google Scholar 

  24. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293

    Article  CAS  PubMed  Google Scholar 

  25. Woo SL, Fox RJ, Sakane M (1997) Force and force distribution in the anterior cruciate ligament and its clinical implications: first place winner of the inaugural GOTS-Beiersdorf research award competition for sports medicine. Sportorthopadie-Sporttraumatologie 13:37–48

    Google Scholar 

  26. Ejerhed L, Kartus J, Sernert N, Kohler K, Karlsson J (2003) Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. Am J Sports Med 31:19–25

    PubMed  Google Scholar 

  27. Oster DM, Grood ES, Feder SM, Butler DL, Levy MS (1992) Primary and coupled motions in the intact and the ACL-deficient knee: an in vitro study in the goat model. J Orthop Res 10:476–484

    Article  CAS  PubMed  Google Scholar 

  28. Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639

    CAS  PubMed  Google Scholar 

  29. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398

    Article  PubMed  Google Scholar 

  30. Miura K, Woo SL, Brinkley R, Fu YC, Noorani S (2006) Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med 34:577–585

    Article  PubMed  Google Scholar 

  31. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  32. Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61:710–714

    CAS  PubMed  Google Scholar 

  33. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  34. Palmer I (2007) On the injuries to the ligaments of the knee joint: a clinical study. 1938. Clin Orthop Relat Res 454:17–22 (discussion 14)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, Y., Ingham, S.J.M., Linde-Rosen, M. et al. Biomechanics of the porcine triple bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18, 20–25 (2010). https://doi.org/10.1007/s00167-009-0893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0893-y

Keywords

Navigation