Skip to main content
Log in

A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 24 August 2017

This article has been updated

Abstract

A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin’s framework (Int J Plast 24:702–725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320–343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 August 2017

    An erratum to this article has been published.

References

  1. Clayton, J.D.: Nonlinear Mechanics of Crystals, Solid Mechanics and Its Applications, vol. 177. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  2. Hull, D., Bacon, D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2011)

    Google Scholar 

  3. Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000). doi:10.1016/S0020-7683(99)00090-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S.: Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater. 49, 3433–3441 (2001). doi:10.1016/S1359-6454(01)00242-7

    Article  Google Scholar 

  5. Maaß, R., Van Petegem, S., Ma, D., Zimmermann, J., Grolimund, D., Roters, F., Van Swygenhoven, H., Raabe, D.: Smaller is stronger: the effect of strain hardening. Acta Mater. 57, 5996–6005 (2009). doi:10.1016/j.actamat.2009.08.024

    Article  Google Scholar 

  6. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). doi:10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  7. Hall, E.O.: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951). doi:10.1088/0370-1301/64/9/303

    Article  ADS  Google Scholar 

  8. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel I(174), 25–28 (1953)

    Google Scholar 

  9. Yefimov, S., van der Giessen, E.: Size effects in single crystal thin films: nonlocal crystal plasticity simulations. Eur. J. Mech. A Solids 24, 183–193 (2005). doi:10.1016/j.euromechsol.2005.01.002

    Article  ADS  MATH  Google Scholar 

  10. Abu Al-Rub, R.K., Voyiadjis, G.Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004). doi:10.1016/j.ijplas.2003.10.007

    Article  Google Scholar 

  11. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971). doi:10.1016/0022-5096(71)90010-X

    Article  ADS  MATH  Google Scholar 

  12. Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977). doi:10.1016/0022-5096(77)90001-1

    Article  ADS  MATH  Google Scholar 

  13. Teodosiu, C., Sidoroff, F.: A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976). doi:10.1016/0020-7225(76)90085-9

    Article  MATH  Google Scholar 

  14. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003). doi:10.1016/S0167-6636(02)00278-8

    Article  Google Scholar 

  15. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997). doi:10.1016/S0065-2156(08)70388-0

    Article  MATH  Google Scholar 

  16. Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004). doi:10.1016/j.jmps.2003.11.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009). doi:10.1016/j.jmps.2008.12.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953). doi:10.1016/0001-6160(53)90054-6

    Article  Google Scholar 

  19. Ashby, M.F.: Deformation of plastically non-homogeneous materials. Philos. Mag 21, 399 (1970). doi:10.1080/14786437008238426

    Article  ADS  Google Scholar 

  20. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999). doi:10.1016/S0022-5096(98)00103-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998). doi:10.1016/S0022-5096(97)00086-0

    Article  ADS  MATH  Google Scholar 

  22. Han, C.-S., Gao, H., Huang, Y., Nix, W.D.: Mechanism-based strain gradient crystal plasticity—I. Theory. J. Mech. Phys. Solids 53, 1188–1203 (2005). doi:10.1016/j.jmps.2004.08.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Steinmann, P.: Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Lecture Notes in Applied Mathematics and Mechanics, vol. 2. Springer, Heidelberg (2015)

  24. Naghdi, P.M., Srinivasa, A.R.: Some general results in the theory of crystallographic slip. Z. Angew. Math. Phys. 45, 687–732 (1994). doi:10.1007/Bf00942749

    Article  MathSciNet  MATH  Google Scholar 

  25. Taylor, G.I.: The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Series A 145, 362–387 (1934). doi:10.1098/rspa.1934.0106

    Article  ADS  MATH  Google Scholar 

  26. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. Asme 106, 326–330 (1984)

    Article  Google Scholar 

  27. Zbib, H.M., Aifantis, E.C.: On the structure and width of shear bands in finite elastoplastic deformations. In: Boehler, J.-P., Khan, A. (eds.) Anisotropy and Localization of Plastic Deformation. Springer, Berlin (1991)

    Google Scholar 

  28. Aifantis, E.C.: The physics of plastic-deformation. Int. J. Plast. 3, 211–247 (1987). doi:10.1016/0749-6419(87)90021-0

    Article  MATH  Google Scholar 

  29. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962). doi:10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  30. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993). doi:10.1016/0022-5096(93)90072-N

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001). doi:10.1016/S0022-5096(01)00049-7

    Article  ADS  MATH  Google Scholar 

  32. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: John, W.H., Theodore, Y.W. (eds.) Advances in Applied Mechanics. Elsevier, Amsterdam (1997)

    Google Scholar 

  33. Acharya, A., Bassani, J.L.: On non-local flow theories that preserve the classical structure of incremental boundary value problems. In: Pineau, A., Zaoui, A. (eds.) IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Springer, Berlin (1996)

    Google Scholar 

  34. Bassani, J.L.: Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49, 1983–1996 (2001). doi:10.1016/S0022-5096(01)00037-0

    Article  ADS  MATH  Google Scholar 

  35. Cosserat, E., Cosserat, F.: Theorie des corps deformables. Librairie Scientifique A. Hermannet Fils, Paris (1909)

    MATH  Google Scholar 

  36. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973). doi:10.1016/0020-7683(73)90120-0

    Article  MATH  Google Scholar 

  37. Sedlacek, R., Forest, S.: Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Phys. Status Solidi B 221, 583–596 (2000). doi:10.1002/1521-3951(200010)221:2<583::Aid-Pssb583>3.0.Co;2-F

    Article  ADS  Google Scholar 

  38. Forest, S.: Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. (2008). doi:10.1080/14786430802154815

  39. Forest, S., Sedlacek, R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized continuum approaches. Philos. Mag. 83, 245–276 (2003). doi:10.1080/0141861021000022255

    Article  ADS  Google Scholar 

  40. Svendsen, B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids 50, 1297–1329 (2002). doi:10.1016/S0022-5096(01)00124-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Menzel, A., Steinmann, P.: On the continuum formulation of higher gradient plasticity for single and polycrystals. J. Mech. Phys. Solids 48, 1777–1796 (2000). doi:10.1016/S0022-5096(99)00024-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001). doi:10.1016/S0022-5096(00)00084-3

    Article  ADS  MATH  Google Scholar 

  43. Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39, 6281–6309 (2002). doi:10.1016/S0020-7683(02)00491-2

    Article  MATH  Google Scholar 

  44. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000). doi:10.1016/S0022-5096(99)00059-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D Nonlinear Phenom. 68, 326–343 (1993). doi:10.1016/0167-2789(93)90128-N

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Fried, E., Gurtin, M.E.: Dynamic solid–solid transitions with phase characterized by an order parameter. Physica D Nonlinear Phenom. 72, 287–308 (1994). doi:10.1016/0167-2789(94)90234-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  48. Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int. J. Plast. 26, 1073–1096 (2010). doi:10.1016/j.ijplas.2010.02.002

    Article  MATH  Google Scholar 

  49. Lele, S.P., Anand, L.: A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. J. Plast. 25, 420–453 (2009). doi:10.1016/j.ijplas.2008.04.003

    Article  MATH  Google Scholar 

  50. Lele, S.P., Anand, L.: A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos. Mag. (2008). doi:10.1080/14786430802087031

  51. Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008). doi:10.1016/j.ijplas.2007.07.014

    Article  MATH  Google Scholar 

  52. Gurtin, M.E., Anand, L., Lele, S.P.: Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007). doi:10.1016/j.jmps.2007.02.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Gurtin, M.E., Anand, L.: A gradient theory for single-crystal plasticity. Model. Simul. Mater. Sci. 15, S263–S270 (2007). doi:10.1088/0965-0393/15/1/S20

    Article  ADS  Google Scholar 

  54. Gurtin, M.E.: The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. J. Mech. Phys. Solids 54, 1882–1898 (2006). doi:10.1016/j.jmps.2006.03.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J. Mech. Phys. Solids 53, 1624–1649 (2005b). doi:10.1016/j.jmps.2004.12.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int. J. Plast. 21, 2297–2318 (2005). doi:10.1016/j.ijplas.2005.01.006

    Article  MATH  Google Scholar 

  57. Gurtin, M.E.: On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int. J. Plast. 19, 47–90 (2003). doi:10.1016/S0749-6419(01)00018-3

    Article  MATH  Google Scholar 

  58. Bardella, L., Giacomini, A.: Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56, 2906–2934 (2008). doi:10.1016/j.jmps.2008.04.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Bardella, L.: A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160 (2006). doi:10.1016/j.jmps.2005.08.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. T.hermodyn 23, 551 (2011). doi:10.1007/s00161-011-0195-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011). doi:10.1007/s00161-011-0194-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597–1611 (1999). doi:10.1016/S1359-6454(99)00020-8

    Article  Google Scholar 

  63. Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)

    MATH  Google Scholar 

  64. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  65. Voyiadjis, G.Z., Faghihi, D.: Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int. J. Plast. 30–31, 218–247 (2012). doi:10.1016/j.ijplas.2011.10.007

    Article  Google Scholar 

  66. Voyiadjis, G.Z., Al-Rub, R.K.A.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005). doi:10.1016/j.ijsolstr.2004.12.010

    Article  MATH  Google Scholar 

  67. Clayton, J.D., McDowell, D.L., Bammann, D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006). doi:10.1016/j.ijplas.2004.12.001

    Article  MATH  Google Scholar 

  68. Levkovitch, V., Svendsen, B.: On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246–7267 (2006). doi:10.1016/j.ijsolstr.2006.05.010

    Article  MathSciNet  MATH  Google Scholar 

  69. Kuroda, M., Tvergaard, V.: A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56, 2573–2584 (2008). doi:10.1016/j.jmps.2008.03.010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Kuroda, M.: On large-strain finite element solutions of higher-order gradient crystal plasticity. Int. J. Solids Struct. 48, 3382–3394 (2011). doi:10.1016/j.ijsolstr.2011.08.008

    Article  Google Scholar 

  71. Ertürk, İ., van Dommelen, J.A.W., Geers, M.G.D.: Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. J. Mech. Phys. Solids 57, 1801–1814 (2009). doi:10.1016/j.jmps.2009.08.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Svendsen, B., Bargmann, S.: On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010). doi:10.1016/j.jmps.2010.06.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Ohno, N., Okumura, D.: Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007). doi:10.1016/j.jmps.2007.02.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Ekh, M., Grymer, M., Runesson, K., Svedberg, T.: Gradient crystal plasticity as part of the computational modelling of polycrystals. Int. J. Numer. Methods Eng. 72, 197–220 (2007). doi:10.1002/nme.2015

    Article  MathSciNet  MATH  Google Scholar 

  75. Bargmann, S., Svendsen, B., Ekh, M.: An extended crystal plasticity model for latent hardening in polycrystals. Comput. Mech. 48, 631–645 (2011). doi:10.1007/s00466-011-0609-2

    Article  MathSciNet  MATH  Google Scholar 

  76. Klusemann, B., Svendsen, B., Bargmann, S.: Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity. GAMM Mitteilungen 36, 219–238 (2013). doi:10.1002/gamm.201310013

    Article  MathSciNet  MATH  Google Scholar 

  77. Wulfinghoff, S., Böhlke, T.: Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport. Int. J. Plast. 69, 152–169 (2015). doi:10.1016/j.ijplas.2014.12.003

    Article  Google Scholar 

  78. Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004). doi:10.1016/j.jmps.2004.03.007

    Article  ADS  MATH  Google Scholar 

  79. El-Naaman, S.A., Nielsen, K.L., Niordson, C.F.: On modeling micro-structural evolution using a higher order strain gradient continuum theory. Int. J. Plast. 76, 285–298 (2016). doi:10.1016/j.ijplas.2015.08.008

    Article  Google Scholar 

  80. Bargmann, S., Reddy, B.D.: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses. Eur. J. Mech. A Solids 30, 719–730 (2011). doi:10.1016/j.euromechsol.2011.04.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Bargmann, S., Reddy, B.D., Klusemann, B.: A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation. Int. J. Solids Struct. 51, 2754–2764 (2014). doi:10.1016/j.ijsolstr.2014.03.010

    Article  Google Scholar 

  82. Gurtin, M.E., Reddy, B.D.: Gradient single-crystal plasticity within a Mises–Hill framework based on a new formulation of self- and latent-hardening. J. Mech. Phys. Solids 68, 134–160 (2014). doi:10.1016/j.jmps.2014.01.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Gurtin, M.E., Ohno, N.: A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems. J. Mech. Phys. Solids 59, 320–343 (2011). doi:10.1016/j.jmps.2010.10.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Gurtin, M.E., Reddy, B.D.: Some issues associated with the intermediate space in single-crystal plasticity. J. Mech. Phys. Solids 95, 230–238 (2016). doi:10.1016/j.jmps.2016.05.027

    Article  ADS  MathSciNet  Google Scholar 

  85. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  86. Bayerschen, E., Böhlke, T.: Power-law defect energy in a single-crystal gradient plasticity framework: a computational study. Comput. Mech. 58, 13–27 (2016). doi:10.1007/s00466-016-1279-x

    Article  MathSciNet  MATH  Google Scholar 

  87. Wulfinghoff, S., Forest, S., Böhlke, T.: Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015). doi:10.1016/j.jmps.2015.02.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Forest, S., Guéninchault, N.: Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sin. 29, 763–772 (2013). doi:10.1007/s10409-013-0088-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Ohno, N., Okumura, D., Shibata, T.: Grain-size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)

    Article  ADS  Google Scholar 

  90. Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015). doi:10.1016/j.jmps.2015.03.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Anand, L., Gurtin, M.E., Reddy, B.D.: The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int. J. Plast. 64, 1–25 (2015). doi:10.1016/j.ijplas.2014.07.009

    Article  Google Scholar 

  92. Pouriayevali, H., Xu, B.-X.: Decomposition of dislocation densities at grain boundary in a finite-deformation gradient crystal-plasticity framework. Int. J. Plast. (2017). doi:10.1016/j.ijplas.2017.04.010

  93. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  94. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  95. Huang, R., Li, Q.J., Wang, Z.J., Huang, L., Li, J., Ma, E., Shan, Z.W.: Flow stress in submicron BCC iron single crystals: sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater. Res. Lett. 3, 121–127 (2015). doi:10.1080/21663831.2014.999953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Pouriayevali.

Additional information

Communicated by Andreas Öchsner.

An erratum to this article is available at https://doi.org/10.1007/s00161-017-0593-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouriayevali, H., Xu, BX. A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model. Continuum Mech. Thermodyn. 29, 1389–1412 (2017). https://doi.org/10.1007/s00161-017-0589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0589-3

Keywords

Navigation