Advertisement

Continuum Mechanics and Thermodynamics

, Volume 29, Issue 6, pp 1389–1412 | Cite as

A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model

Original Article
  • 189 Downloads

Abstract

A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin’s framework (Int J Plast 24:702–725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320–343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.

Keywords

Gradient crystal plasticity Hardening Finite deformation Gradient strengthening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clayton, J.D.: Nonlinear Mechanics of Crystals, Solid Mechanics and Its Applications, vol. 177. Springer, Dordrecht (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Hull, D., Bacon, D.J.: Introduction to Dislocations. Butterworth-Heinemann, Oxford (2011)Google Scholar
  3. 3.
    Hutchinson, J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000). doi: 10.1016/S0020-7683(99)00090-6 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S.: Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater. 49, 3433–3441 (2001). doi: 10.1016/S1359-6454(01)00242-7 CrossRefGoogle Scholar
  5. 5.
    Maaß, R., Van Petegem, S., Ma, D., Zimmermann, J., Grolimund, D., Roters, F., Van Swygenhoven, H., Raabe, D.: Smaller is stronger: the effect of strain hardening. Acta Mater. 57, 5996–6005 (2009). doi: 10.1016/j.actamat.2009.08.024 CrossRefGoogle Scholar
  6. 6.
    Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). doi: 10.1016/0956-7151(94)90502-9 CrossRefGoogle Scholar
  7. 7.
    Hall, E.O.: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951). doi: 10.1088/0370-1301/64/9/303 ADSCrossRefGoogle Scholar
  8. 8.
    Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel I(174), 25–28 (1953)Google Scholar
  9. 9.
    Yefimov, S., van der Giessen, E.: Size effects in single crystal thin films: nonlocal crystal plasticity simulations. Eur. J. Mech. A Solids 24, 183–193 (2005). doi: 10.1016/j.euromechsol.2005.01.002 ADSCrossRefMATHGoogle Scholar
  10. 10.
    Abu Al-Rub, R.K., Voyiadjis, G.Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004). doi: 10.1016/j.ijplas.2003.10.007 CrossRefGoogle Scholar
  11. 11.
    Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971). doi: 10.1016/0022-5096(71)90010-X ADSCrossRefMATHGoogle Scholar
  12. 12.
    Asaro, R.J., Rice, J.R.: Strain localization in ductile single crystals. J. Mech. Phys. Solids 25, 309–338 (1977). doi: 10.1016/0022-5096(77)90001-1 ADSCrossRefMATHGoogle Scholar
  13. 13.
    Teodosiu, C., Sidoroff, F.: A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976). doi: 10.1016/0020-7225(76)90085-9 CrossRefMATHGoogle Scholar
  14. 14.
    Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003). doi: 10.1016/S0167-6636(02)00278-8 CrossRefGoogle Scholar
  15. 15.
    Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997). doi: 10.1016/S0065-2156(08)70388-0 CrossRefMATHGoogle Scholar
  16. 16.
    Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004). doi: 10.1016/j.jmps.2003.11.002 ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009). doi: 10.1016/j.jmps.2008.12.002 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953). doi: 10.1016/0001-6160(53)90054-6 CrossRefGoogle Scholar
  19. 19.
    Ashby, M.F.: Deformation of plastically non-homogeneous materials. Philos. Mag 21, 399 (1970). doi: 10.1080/14786437008238426 ADSCrossRefGoogle Scholar
  20. 20.
    Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239–1263 (1999). doi: 10.1016/S0022-5096(98)00103-3 ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998). doi: 10.1016/S0022-5096(97)00086-0 ADSCrossRefMATHGoogle Scholar
  22. 22.
    Han, C.-S., Gao, H., Huang, Y., Nix, W.D.: Mechanism-based strain gradient crystal plasticity—I. Theory. J. Mech. Phys. Solids 53, 1188–1203 (2005). doi: 10.1016/j.jmps.2004.08.008 ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Steinmann, P.: Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Lecture Notes in Applied Mathematics and Mechanics, vol. 2. Springer, Heidelberg (2015)Google Scholar
  24. 24.
    Naghdi, P.M., Srinivasa, A.R.: Some general results in the theory of crystallographic slip. Z. Angew. Math. Phys. 45, 687–732 (1994). doi: 10.1007/Bf00942749 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Taylor, G.I.: The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Series A 145, 362–387 (1934). doi: 10.1098/rspa.1934.0106 ADSCrossRefMATHGoogle Scholar
  26. 26.
    Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. Asme 106, 326–330 (1984)CrossRefGoogle Scholar
  27. 27.
    Zbib, H.M., Aifantis, E.C.: On the structure and width of shear bands in finite elastoplastic deformations. In: Boehler, J.-P., Khan, A. (eds.) Anisotropy and Localization of Plastic Deformation. Springer, Berlin (1991)Google Scholar
  28. 28.
    Aifantis, E.C.: The physics of plastic-deformation. Int. J. Plast. 3, 211–247 (1987). doi: 10.1016/0749-6419(87)90021-0 CrossRefMATHGoogle Scholar
  29. 29.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962). doi: 10.1007/BF00253945 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993). doi: 10.1016/0022-5096(93)90072-N ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001). doi: 10.1016/S0022-5096(01)00049-7 ADSCrossRefMATHGoogle Scholar
  32. 32.
    Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: John, W.H., Theodore, Y.W. (eds.) Advances in Applied Mechanics. Elsevier, Amsterdam (1997)Google Scholar
  33. 33.
    Acharya, A., Bassani, J.L.: On non-local flow theories that preserve the classical structure of incremental boundary value problems. In: Pineau, A., Zaoui, A. (eds.) IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Springer, Berlin (1996)Google Scholar
  34. 34.
    Bassani, J.L.: Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49, 1983–1996 (2001). doi: 10.1016/S0022-5096(01)00037-0 ADSCrossRefMATHGoogle Scholar
  35. 35.
    Cosserat, E., Cosserat, F.: Theorie des corps deformables. Librairie Scientifique A. Hermannet Fils, Paris (1909)MATHGoogle Scholar
  36. 36.
    Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973). doi: 10.1016/0020-7683(73)90120-0 CrossRefMATHGoogle Scholar
  37. 37.
    Sedlacek, R., Forest, S.: Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Phys. Status Solidi B 221, 583–596 (2000). doi: 10.1002/1521-3951(200010)221:2<583::Aid-Pssb583>3.0.Co;2-F ADSCrossRefGoogle Scholar
  38. 38.
    Forest, S.: Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. (2008). doi: 10.1080/14786430802154815
  39. 39.
    Forest, S., Sedlacek, R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized continuum approaches. Philos. Mag. 83, 245–276 (2003). doi: 10.1080/0141861021000022255 ADSCrossRefGoogle Scholar
  40. 40.
    Svendsen, B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids 50, 1297–1329 (2002). doi: 10.1016/S0022-5096(01)00124-7 ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Menzel, A., Steinmann, P.: On the continuum formulation of higher gradient plasticity for single and polycrystals. J. Mech. Phys. Solids 48, 1777–1796 (2000). doi: 10.1016/S0022-5096(99)00024-1 ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001). doi: 10.1016/S0022-5096(00)00084-3 ADSCrossRefMATHGoogle Scholar
  43. 43.
    Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39, 6281–6309 (2002). doi: 10.1016/S0020-7683(02)00491-2 CrossRefMATHGoogle Scholar
  44. 44.
    Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000). doi: 10.1016/S0022-5096(99)00059-9 ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D Nonlinear Phenom. 68, 326–343 (1993). doi: 10.1016/0167-2789(93)90128-N ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Fried, E., Gurtin, M.E.: Dynamic solid–solid transitions with phase characterized by an order parameter. Physica D Nonlinear Phenom. 72, 287–308 (1994). doi: 10.1016/0167-2789(94)90234-8 ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  48. 48.
    Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int. J. Plast. 26, 1073–1096 (2010). doi: 10.1016/j.ijplas.2010.02.002 CrossRefMATHGoogle Scholar
  49. 49.
    Lele, S.P., Anand, L.: A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. J. Plast. 25, 420–453 (2009). doi: 10.1016/j.ijplas.2008.04.003 CrossRefMATHGoogle Scholar
  50. 50.
    Lele, S.P., Anand, L.: A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos. Mag. (2008). doi: 10.1080/14786430802087031
  51. 51.
    Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008). doi: 10.1016/j.ijplas.2007.07.014 CrossRefMATHGoogle Scholar
  52. 52.
    Gurtin, M.E., Anand, L., Lele, S.P.: Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mech. Phys. Solids 55, 1853–1878 (2007). doi: 10.1016/j.jmps.2007.02.006 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Gurtin, M.E., Anand, L.: A gradient theory for single-crystal plasticity. Model. Simul. Mater. Sci. 15, S263–S270 (2007). doi: 10.1088/0965-0393/15/1/S20 ADSCrossRefGoogle Scholar
  54. 54.
    Gurtin, M.E.: The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. J. Mech. Phys. Solids 54, 1882–1898 (2006). doi: 10.1016/j.jmps.2006.03.003 ADSMathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J. Mech. Phys. Solids 53, 1624–1649 (2005b). doi: 10.1016/j.jmps.2004.12.008 ADSMathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Gurtin, M.E., Anand, L.: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformations. Int. J. Plast. 21, 2297–2318 (2005). doi: 10.1016/j.ijplas.2005.01.006 CrossRefMATHGoogle Scholar
  57. 57.
    Gurtin, M.E.: On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int. J. Plast. 19, 47–90 (2003). doi: 10.1016/S0749-6419(01)00018-3 CrossRefMATHGoogle Scholar
  58. 58.
    Bardella, L., Giacomini, A.: Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56, 2906–2934 (2008). doi: 10.1016/j.jmps.2008.04.001 ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Bardella, L.: A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160 (2006). doi: 10.1016/j.jmps.2005.08.003 ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. T.hermodyn 23, 551 (2011). doi: 10.1007/s00161-011-0195-8 ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011). doi: 10.1007/s00161-011-0194-9 ADSMathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597–1611 (1999). doi: 10.1016/S1359-6454(99)00020-8 CrossRefGoogle Scholar
  63. 63.
    Hirth, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)MATHGoogle Scholar
  64. 64.
    Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (1982)CrossRefMATHGoogle Scholar
  65. 65.
    Voyiadjis, G.Z., Faghihi, D.: Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int. J. Plast. 30–31, 218–247 (2012). doi: 10.1016/j.ijplas.2011.10.007 CrossRefGoogle Scholar
  66. 66.
    Voyiadjis, G.Z., Al-Rub, R.K.A.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005). doi: 10.1016/j.ijsolstr.2004.12.010 CrossRefMATHGoogle Scholar
  67. 67.
    Clayton, J.D., McDowell, D.L., Bammann, D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006). doi: 10.1016/j.ijplas.2004.12.001 CrossRefMATHGoogle Scholar
  68. 68.
    Levkovitch, V., Svendsen, B.: On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246–7267 (2006). doi: 10.1016/j.ijsolstr.2006.05.010 MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Kuroda, M., Tvergaard, V.: A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56, 2573–2584 (2008). doi: 10.1016/j.jmps.2008.03.010 ADSMathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Kuroda, M.: On large-strain finite element solutions of higher-order gradient crystal plasticity. Int. J. Solids Struct. 48, 3382–3394 (2011). doi: 10.1016/j.ijsolstr.2011.08.008 CrossRefGoogle Scholar
  71. 71.
    Ertürk, İ., van Dommelen, J.A.W., Geers, M.G.D.: Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. J. Mech. Phys. Solids 57, 1801–1814 (2009). doi: 10.1016/j.jmps.2009.08.003 ADSMathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Svendsen, B., Bargmann, S.: On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010). doi: 10.1016/j.jmps.2010.06.005 ADSMathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Ohno, N., Okumura, D.: Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007). doi: 10.1016/j.jmps.2007.02.007 ADSMathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Ekh, M., Grymer, M., Runesson, K., Svedberg, T.: Gradient crystal plasticity as part of the computational modelling of polycrystals. Int. J. Numer. Methods Eng. 72, 197–220 (2007). doi: 10.1002/nme.2015 MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Bargmann, S., Svendsen, B., Ekh, M.: An extended crystal plasticity model for latent hardening in polycrystals. Comput. Mech. 48, 631–645 (2011). doi: 10.1007/s00466-011-0609-2 MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    Klusemann, B., Svendsen, B., Bargmann, S.: Analysis and comparison of two finite element algorithms for dislocation density based crystal plasticity. GAMM Mitteilungen 36, 219–238 (2013). doi: 10.1002/gamm.201310013 MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Wulfinghoff, S., Böhlke, T.: Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport. Int. J. Plast. 69, 152–169 (2015). doi: 10.1016/j.ijplas.2014.12.003 CrossRefGoogle Scholar
  78. 78.
    Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004). doi: 10.1016/j.jmps.2004.03.007 ADSCrossRefMATHGoogle Scholar
  79. 79.
    El-Naaman, S.A., Nielsen, K.L., Niordson, C.F.: On modeling micro-structural evolution using a higher order strain gradient continuum theory. Int. J. Plast. 76, 285–298 (2016). doi: 10.1016/j.ijplas.2015.08.008 CrossRefGoogle Scholar
  80. 80.
    Bargmann, S., Reddy, B.D.: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses. Eur. J. Mech. A Solids 30, 719–730 (2011). doi: 10.1016/j.euromechsol.2011.04.006 ADSMathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Bargmann, S., Reddy, B.D., Klusemann, B.: A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation. Int. J. Solids Struct. 51, 2754–2764 (2014). doi: 10.1016/j.ijsolstr.2014.03.010 CrossRefGoogle Scholar
  82. 82.
    Gurtin, M.E., Reddy, B.D.: Gradient single-crystal plasticity within a Mises–Hill framework based on a new formulation of self- and latent-hardening. J. Mech. Phys. Solids 68, 134–160 (2014). doi: 10.1016/j.jmps.2014.01.002 ADSMathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Gurtin, M.E., Ohno, N.: A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems. J. Mech. Phys. Solids 59, 320–343 (2011). doi: 10.1016/j.jmps.2010.10.005 ADSMathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Gurtin, M.E., Reddy, B.D.: Some issues associated with the intermediate space in single-crystal plasticity. J. Mech. Phys. Solids 95, 230–238 (2016). doi: 10.1016/j.jmps.2016.05.027 ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  86. 86.
    Bayerschen, E., Böhlke, T.: Power-law defect energy in a single-crystal gradient plasticity framework: a computational study. Comput. Mech. 58, 13–27 (2016). doi: 10.1007/s00466-016-1279-x MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Wulfinghoff, S., Forest, S., Böhlke, T.: Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015). doi: 10.1016/j.jmps.2015.02.008 ADSMathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Forest, S., Guéninchault, N.: Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sin. 29, 763–772 (2013). doi: 10.1007/s10409-013-0088-0 ADSMathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    Ohno, N., Okumura, D., Shibata, T.: Grain-size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)ADSCrossRefGoogle Scholar
  90. 90.
    Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015). doi: 10.1016/j.jmps.2015.03.003 ADSMathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Anand, L., Gurtin, M.E., Reddy, B.D.: The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int. J. Plast. 64, 1–25 (2015). doi: 10.1016/j.ijplas.2014.07.009 CrossRefGoogle Scholar
  92. 92.
    Pouriayevali, H., Xu, B.-X.: Decomposition of dislocation densities at grain boundary in a finite-deformation gradient crystal-plasticity framework. Int. J. Plast. (2017). doi: 10.1016/j.ijplas.2017.04.010
  93. 93.
    Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)MATHGoogle Scholar
  94. 94.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Amsterdam (2005)MATHGoogle Scholar
  95. 95.
    Huang, R., Li, Q.J., Wang, Z.J., Huang, L., Li, J., Ma, E., Shan, Z.W.: Flow stress in submicron BCC iron single crystals: sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater. Res. Lett. 3, 121–127 (2015). doi: 10.1080/21663831.2014.999953 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Mechanics of Functional Materials Division, Institute of Material ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations