Skip to main content
Log in

An extended crystal plasticity model for latent hardening in polycrystals

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, a computational approach to modeling size-dependent self- and latent hardening in polycrystals is presented. Latent hardening is the hardening of inactive slip systems due to active slip systems. We focus attention on the investigation of glide system interaction, latent hardening and excess dislocation development. In particular, latent hardening results in a transition to patchy slip as a first indication and expression of the development of dislocation microstructures. To this end, following Nye (Acta Metall 1:153–162, 1953), Kondo (in Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp. 41–47, 1953), and many others, local deformation incompatibility in the material is adopted as a measure of the density of geometrically necessary dislocations. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening effects. A large-deformation model for latent hardening is introduced. This approach is based on direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms of the constitutive relations as based on the free energy density and dissipation potential. The numerical implementation is done via a dual-mixed finite element method. A numerical example for polycrystals is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R, Marsden JE, Ratiu T (1998) Manifolds, tensor analysis, and applications, applied mathematical sciences, vol 75. Springer, Berlin

    Google Scholar 

  2. Acharya A, Bassani JL (2000) Lattice incompatibility and a gradient theory of crystal plasticity. J Mech Phys Solids 48: 1565–1595

    Article  MathSciNet  MATH  Google Scholar 

  3. Acharya A, Bassani JL, Beaudoin A (2003) Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity. Script Mater 48: 167–172

    Article  Google Scholar 

  4. Anand L, Gurtin ME, Lele SP, Gething C (2005) A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results. J Mech Phys Solids 53: 1789–1826

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardella L (2006) A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 54: 128–160

    Article  MathSciNet  MATH  Google Scholar 

  6. Bargmann S, Svendsen B (2011) Rate variational continuum thermodynamic modeling and simulation of GND-based latent hardening in polycrystals. Int J Multiscale Comput Eng (accepted for publication)

  7. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23: 1–115

    Article  Google Scholar 

  8. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Phil Mag 21: 399–424

    Article  Google Scholar 

  9. Bassani JL, Wu TY (1991) Latent hardening in single crystals. 2. Analytical characterization and predictions. Proc R Soc Lond A 435: 21–41

    Article  MATH  Google Scholar 

  10. Bauschinger J (1881) . Zivilingenieur 27: 289–348

    Google Scholar 

  11. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  12. Carstensen C, Hackl K, Mielke A (2003) Nonconvex potentials and microstructures in finite-strain plasticity. Proc R Soc Lond A 458: 299–317

    MathSciNet  Google Scholar 

  13. Cermelli P, Gurtin ME (2001) On the characterization of the geometrically necessary dislocations in finite plasticity. J Mech Phys Solids 49: 1539–1568

    Article  MATH  Google Scholar 

  14. Coleman B, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Rat Mech Anal 13: 167–178

    Article  MathSciNet  MATH  Google Scholar 

  15. Coleman B, Gurtin M (1967) Thermodynamics with internal state variables. J Chem Phys 47: 597–613

    Article  Google Scholar 

  16. Dai H, Parks DM (1997) Geometrically-necessary dislocation density and scale-dependent crystal plasticity. In: Khan AS (ed) Proceedings of plasticity ’97, pp 17–18

  17. Edelen DGB (1973) On the existence of symmetry relations and dissipation potential. Arch Rat Mech Anal 51: 218–227

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekh M, Grymer M, Runesson K, Svedberg T (2007) Gradient crystal plasticity as part of the computational modeling of polycrystals. Int J Numer Methods Eng 72: 197–220

    Article  MathSciNet  MATH  Google Scholar 

  19. Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218(1–2): 103–113. doi:10.1007/s00707-010-0403-9

    Article  MATH  Google Scholar 

  20. Evers LP, Brekelmanns WAM, Geers MGD (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41: 5209–5230

    Article  MATH  Google Scholar 

  21. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metal Mater 42: 475–487

    Article  Google Scholar 

  22. Franciosi P, Berveiller M, Zaoui A (1980) Latent hardening in copper and aluminium single crystals. Acta Metall 28: 273–283

    Article  Google Scholar 

  23. Franciosi P, Zaoui A (1983) Glide mechanisms in bcc crystals: an investigation of the case of α-iron through multislip and latent hardening tests. Acta Metall 31: 1331

    Article  Google Scholar 

  24. Gurtin ME (2000) On the plasticity of single crystals: free energy. microforces, plastic-strain gradients. J Mech Phys Solids 48: 989–1036

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurtin ME (2002) A theory of viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50: 5–32

    Article  MathSciNet  MATH  Google Scholar 

  26. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Lond B 64: 747–753

    Article  Google Scholar 

  27. Kocks UF (1964) Latent hardening and secondary slip in aluminum and silver. Trans Metall Soc AIME 230: 1160

    Google Scholar 

  28. Kocks UF (1970) The relation between polycrystal deformation and single crystal deformation. Metall Trans 1: 1121–1144

    Google Scholar 

  29. Kondo K (1953) On the geometrical and physical foundations of the theory of yielding. In: Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp 41–47

  30. Kröner E (1960) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch Rat Mech Anal 4: 273–334

    Article  MATH  Google Scholar 

  31. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36: 1–6

    Article  MATH  Google Scholar 

  32. Levkovitch V, Svendsen B (2006) On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int J Solids Struct 43: 7246–7267

    Article  MathSciNet  MATH  Google Scholar 

  33. Mandel J (1971) Plasticité classique et viscoplasticité, CISM Courses and Lectures, vol 97. Springer, Berlin

    Google Scholar 

  34. Menzel A, Steinmann P (2000) On the continuum formulation of higher gradient plasticity for single and polycrystals. J Mech Phys Solids 48: 1777–1796

    Article  MathSciNet  MATH  Google Scholar 

  35. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Num Methods Eng 55: 1285–1322

    Article  MathSciNet  MATH  Google Scholar 

  36. Mura T (1987) Micromechanics of defects in solids. Kluwer, Dordrecht

    Book  Google Scholar 

  37. Needleman A, Sevillano JG (2003) Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity. Script Mater 48: 109–111

    Article  Google Scholar 

  38. Niordson CF, Legarth BN (2010) Strain gradient effects on cyclic plasticity. J Mech Phys Solids 58(4): 542–557

    Article  MathSciNet  Google Scholar 

  39. Nye JF (1953) Some geometric relations in dislocated crystals. Acta Metall 1: 153–162

    Article  Google Scholar 

  40. Ortiz M, Repetto EA (1999) Non-convex energy minimization and dislocation structures in ductile single crystals. J Mech Phys Solids 47: 397–462

    Article  MathSciNet  MATH  Google Scholar 

  41. Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comp Methods Appl Mech Eng 171: 419–444

    Article  MathSciNet  MATH  Google Scholar 

  42. Petch NJ (1953) The cleavage strength of polycrystals I. J Iron Steel Inst 174: 25–28

    Google Scholar 

  43. Piercy GR, Cahn RW, Cottrell AH (1955) A study of primary and conjugate slip in crystals of alpha-brass. Acta Metall. 3: 333–338

    Google Scholar 

  44. Rauch EF, Gracio JJ, Barlat F, Lopes AB, Ferreira Duarte J (2002) Hardening behavior and structural evolution upon strain reversal of aluminium alloys. Script Mater 46(12): 881–886

    Article  Google Scholar 

  45. Rice J (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19: 433–455

    Article  MATH  Google Scholar 

  46. Saimoto S (1963) Low temperature tensile deformation of copper single crystals oriented for multiple slip. PhD thesis, MIT, Cambridge

  47. Shizawa K, Zbib HM (1999) A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I. Fundamentals. Int J Plast 15: 899–938

    Article  MATH  Google Scholar 

  48. Šilhavý M (1997) The mechanics and thermodynamics of continuous media. Springer, Berlin

    MATH  Google Scholar 

  49. Steinmann P (1996) Views on multiplicative elastoplasticity and the continuum theory on dislocations. Int J Eng Sci 34: 1717–1735

    Article  MATH  Google Scholar 

  50. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41: 2855–2865

    Article  Google Scholar 

  51. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46: 5109–5115

    Article  Google Scholar 

  52. Svendsen B (2002) Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J Mech Phys Solids 50: 1297–1329

    Article  MathSciNet  MATH  Google Scholar 

  53. Svendsen B, Bargmann S (2010) On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J Mech Phys Solids 58: 1253–1271

    Article  MathSciNet  MATH  Google Scholar 

  54. Taylor GI, Elam CF (1925) The plastic extension and fracture of aluminium crystals. Proc R Soc Lond A 108(745): 28–51

    Article  Google Scholar 

  55. Thompson AW, Baskes MI, Flanagan WF (1973) The dependence of polycrystal work hardening on grain size. Acta Metall 21: 1017–1032

    Article  Google Scholar 

  56. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305: 986–989

    Article  Google Scholar 

  57. Yalcinkaya T, Brekelmans WAM, Geers MGD (2011) Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J Mech Phys Solids 59(1): 1–17

    Article  MathSciNet  Google Scholar 

  58. Zimmer WH, Hecker SS, Rohr DL, Murr LE (1983) Large strain plastic deformation of commercially pure nickel. Metal Sci 17: 198–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swantje Bargmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargmann, S., Svendsen, B. & Ekh, M. An extended crystal plasticity model for latent hardening in polycrystals. Comput Mech 48, 631–645 (2011). https://doi.org/10.1007/s00466-011-0609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0609-2

Keywords

Navigation