Skip to main content
Log in

On shape sensitivities with heaviside-enriched XFEM

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper investigates the behavior of shape sensitivities within the context of the eXtended Finite Element Method (XFEM) using a Heaviside enrichment strategy, wherein the shape derivative is computed by the adjoint method. The Heaviside function is discontinuous by construction. This feature of the enrichment function presents advantages as well as challenges in the computation of shape sensitivities, both of which are discussed in detail in this paper. Using continuum and discrete approaches, we present the derivation of analytical shape sensitivities with respect to the design variables which define the design geometry. We propose a robust semi-analytical approach to computing the shape sensitivities, which provides great ease of implementation as compared to fully analytical approaches. The behavior of the XFEM-based shape sensitivities is analyzed using linear heat diffusion examples in 2D, and an incompressible fluid flow example in 3D. We compare XFEM-based shape sensitivities against shape sensitivities obtained through the classical approach of using a body-fitted mesh. It is found that the former are not as smooth as those obtained using a comparable body-fitted mesh. This discrepancy is shown to be an outcome of the discretization error of the design geometry on a background mesh and is not a consequence of the approach by which the XFEM-based shape sensitivities are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Gournay Fd, Jouve F, Toader A M (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MathSciNet  MATH  Google Scholar 

  • Annavarapu C, Hautefeuille M, Dolbow J E (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225–228:44–54

    Article  MathSciNet  MATH  Google Scholar 

  • Azegami H, Shimoda S K M, Katamine E (1997) Irregularity of shape optimization problems and an improvement technique. Transactions on The Built Environment 28:309–326

    Google Scholar 

  • Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    Article  MathSciNet  MATH  Google Scholar 

  • Bletzinger K U, Kimmich S, Ramm E (1991) Efficient modeling in shape optimal design. Comput Syst Eng 2(5–6):483–495

    Article  Google Scholar 

  • Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Tortorelli D (1997) Three-dimensional shape optimization with variational geometry. Structural Optimization 13(2-3):81– 94

    Article  Google Scholar 

  • Coffin P, Maute K (2016a) A level-set method for steady-state and transient natural convection problems. Struct Multidiscip Optim 53(5):1047–1067

  • Coffin P, Maute K (2016b) Level set topology optimization of cooling and heating devices using a simplified convection model. Struct Multidiscip Optim 53(5):985–1003

  • Cook RD (1994) Finite element modeling for stress analysis. Wiley

  • Delfour M C, Zolésio J P (1992) Structure of shape derivatives for nonsmooth domains. J Funct Anal 104 (1):1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Delfour MC, Zolésio JP (2011) Shapes and geometries: metrics, analysis, differential calculus, and optimization. SIAM

  • Dijk N, Maute K, Langelaar M, Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-FEM and level set methods. In: IUTAM Symposium on topological design optimization of structures, machines and materials. Springer, pp 23–32

  • Firl M, Wüchner R, Bletzinger K U (2013) Regularization of shape optimization problems using fe-based parametrization. Struct Multidiscip Optim 47(4):507–521

    Article  MathSciNet  MATH  Google Scholar 

  • Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  • Gain A L, Paulino G H (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48(4):685–710

    Article  MathSciNet  Google Scholar 

  • Goldman R (2005) Curvature formulas for implicit curves and surfaces. Comput Aided Geom Des 22(7):632–658

    Article  MathSciNet  MATH  Google Scholar 

  • Haasemann G, Kästner M, Prüger S, Ulbricht V (2011) Development of a quadratic finite element formulation based on the XFEM and NURBS. Int J Numer Methods Eng 86(4–5):698–617

    MathSciNet  MATH  Google Scholar 

  • Haftka R T, Grandhi R V (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57(1):91–106

    Article  MathSciNet  MATH  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33-35):3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  • Haslinger J, Maitre J, Tomas L (2001) Fictitious domains methods with distributed lagrange multipliers part ii: application to the solution of shape optimization problems. Math Methods Appl Sci 11(3):549–563

    Article  MathSciNet  MATH  Google Scholar 

  • Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3(3):233–260

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid-structure interaction problems. Struct Multidiscip Optim 52(1):179–195

    Article  MathSciNet  Google Scholar 

  • Jeong S, Lim S, Min S (2016) Level-set-based topology optimization using remeshing techniques for magnetic actuator design. IEEE Trans Magn 52(3):1–4

    Article  Google Scholar 

  • Juntunen M, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78 (267):1353–1374

    Article  MathSciNet  MATH  Google Scholar 

  • Kenway G K, Kennedy G J, Martins J R (2010) A CAD-free approach to high-fidelity aerostructural optimization. In: 13th AIAA/ISSMO multidisciplinary analysis optimization conference, 13–15 September 2010, Fort Worth, Texas

  • Kim N H, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Mech Struct Mach 194(30-33):3291–3314

    MathSciNet  MATH  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems, Zurich, Switzerland

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Article  MathSciNet  MATH  Google Scholar 

  • Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for heaviside enriched XFEM. Comput Mech 54(5):1357–1374

    Article  MathSciNet  MATH  Google Scholar 

  • Lang C, Sharma A, Doostan A, Maute K (2015) Heaviside enriched extended stochastic fem for problems with uncertain material interfaces. Comput Mech 56(5):753–767

    Article  MathSciNet  MATH  Google Scholar 

  • Lawry M, Maute K (2015) Level set topology optimization of problems with sliding contact interfaces. Struct Multidiscip Optim 52(6):1107–1119

    Article  MathSciNet  Google Scholar 

  • Li L, Wang M, Wei P (2012) XFEM Schemes for level set based structural optimization. Front Mech Eng 7(4):335–356

    Article  Google Scholar 

  • Liu P, Luo Y, Kang Z (2016) Multi-material topology optimization considering interface behavior via XFEM and level set method. Comput Methods Appl Mech Eng 308:113–133

    Article  MathSciNet  Google Scholar 

  • Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    Article  MathSciNet  Google Scholar 

  • Materna D, Barthold F J (2008) Defect and material mechanics. Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Springer, Netherlands, pp 133–155

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  • Moës N, Cloirec M, Cartraud P, Remacle J F (2003) A computational approach to handle complex microstructure geometries. Int J Numer Methods Eng 192(28–30):3163–3177

    MATH  Google Scholar 

  • Mohammadi B, Pironneau O (2001) Applied shape optimization for fluids. Oxford University Press

  • Mohammadi B, Pironneau O (2004) Shape optimization in fluid mechanics. Annu Rev Fluid Mech 36:255–279

    Article  MathSciNet  MATH  Google Scholar 

  • Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2015) A gradient-based shape optimization scheme using an interface-enriched generalized fem. Comput Methods Appl Mech Eng 296:1–17

    Article  MathSciNet  Google Scholar 

  • Noël L, Van Miegroet L, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107(8):669–695

  • Osher SJ, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

  • Schleupen A, Maute K, Ramm E (2000) Adaptive FE-procedures in shape optimization. Struct Multidiscip Optim 19(4):282–302

    Article  Google Scholar 

  • Schott B, Wall W (2014) A new face-oriented stabilized xfem approach for 2d and 3d incompressible navier–stokes equations. Comput Methods Appl Mech Eng 276(1):233–265

    Article  MathSciNet  Google Scholar 

  • Simon J (1980) Differentiation with respect to the domain in boundary value problems. Numer Funct Anal Optim 2(7-8):649–687

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zolésio JP (1992) Introduction to shape optimization. Springer

  • Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1-3):139–148

    Article  MathSciNet  MATH  Google Scholar 

  • Sukumar N, Chopp D L, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58(9):1321–1346

    Article  MATH  Google Scholar 

  • Tezduyar T E, Mittal S, Ray S E, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242

    Article  MATH  Google Scholar 

  • Tortorelli D A, Tomasko J A, Morthland T E, Dantzig J A (1994) Optimal design of nonlinear parabolic systems. part II: variable spatial domain with applications to casting optimization. Comput Methods Appl Mech Eng 113(1):157–172

    Article  MATH  Google Scholar 

  • Tran A, Yvonnet J, He Q C, Toulemonde C, Sanahuja J (2011) A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. Int J Numer Methods Eng 85(11):1436–1459

    Article  MATH  Google Scholar 

  • Villanueva C H, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

    Article  MathSciNet  MATH  Google Scholar 

  • Walker SW (2015) The shape of things: a practical guide to differential geometry and the shape derivative. SIAM

  • Wang M Y, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wei P, Wang M, Xing X (2010) A study on x-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719

    Article  Google Scholar 

  • Zabras N, Ganapathysubramanian B, Tan L (2006) Modelling dendritic solidification with melt convection using the extended finite element method. J Comput Phys 218(1):200–227

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245–246(15):75–89

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support of the National Science Foundation under Grant EFRI-ODISSEI 1240374. The second author acknowledges the support of the National Science Foundation under Grant CMMI 1235532. The third author, in addition to the above grants, acknowledges the support of the Air Force Office of Scientific Research under grant FA9550-13-1-0088.

This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Appendix: A

Appendix: A

CAD-free based shape optimization studies use the nodal coordinates of the element as the design variables. Here we draw a quantitative comparison between shape sensitivities obtained using the approach proposed in the current study (Eulerian framework), and shape sensitivities obtained using a body-fitted mesh (Lagrangian framework).

We consider a 1D linear heat diffusion problem depicted in Fig. 26. A unit heat flux is applied to node 3 and to the interface x Γ, in the body-fitted and XFEM cases respectively. For the XFEM case, phase 2 is void of any material. Consequently, the setups shown in Fig. 26 are physically equivalent. The response, \(\mathcal {Z}\) is the temperature measured at node 2. As discussed in Section 4.2, shape sensitivities vanish for elements not intersected by the material interface. Thus, we draw comparisons for the second element only, the system of equations for which can be expressed as

Fig. 26
figure 26

Heat diffusion problem setup in 1D

$$\begin{array}{@{}rcl@{}} &&\text{FEM:} \\ &&\left[\begin{array}{cc} \frac{1}{L_{1}} + \frac{1}{L_{2}} & -\frac{1}{L_{2}} \\ -\frac{1}{L_{2}} & \frac{1}{L_{2}} \end{array}\right] \left[\begin{array}{c} \hat{u}_{2} \\ \hat{u}_{3} \end{array}\right] = \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \implies \\ &&\left[\begin{array}{cc} \frac{1}{x_{2} - x_{1}} + \frac{1}{x_{3} - x_{2}} & -\frac{1}{x_{3} - x_{2}} \\ -\frac{1}{x_{3} - x_{2}} & \frac{1}{x_{3} - x_{2}} \end{array}\right] \left[\begin{array}{c} \hat{u}_{2} \\ \hat{u}_{3} \end{array}\right] = \left[\begin{array}{c} 0 \\ 1 \end{array}\right],\\ &&\text{XFEM:} \\ &&\left[\begin{array}{cc} \frac{1}{L_{1}} + \frac{L_{2}}{{L_{0}^{2}}} & -\frac{L_{2}}{{L_{0}^{2}}} \\ - \frac{L_{2}}{{L_{0}^{2}}} & \frac{L_{2}}{{L_{0}^{2}}} \end{array}\right] \left[\begin{array}{c} \hat{u}_{2}^{*} \\ \hat{u}_{3}^{*} \end{array}\right] = \left[\begin{array}{c} \frac{L_{0} - L_{2}}{L_{0}} \\ \frac{L_{2}}{L_{0}} \end{array}\right] \implies \\ &&\left[\begin{array}{cc} \frac{1}{x_{2} - x_{1}} + \frac{(x_{\Gamma} - x_{2})}{(x_{3} - x_{2})^{2}} & -\frac{x_{\Gamma} -x_{2}}{(x_{3} - x_{2})^{2}} \\ -\frac{x_{\Gamma} -x_{2}}{(x_{3} - x_{2})^{2}} & \frac{x_{\Gamma} -x_{2}}{(x_{3} - x_{2})^{2}} \end{array}\right] \left[\begin{array}{c} \hat{u}_{2}^{*} \\ \hat{u}_{3}^{*} \end{array}\right] = \left[\begin{array}{c} \frac{x_{3} - x_{\Gamma}}{x_{3} - x_{2}} \\ \frac{x_{\Gamma} - x_{2}}{x_{3} - x_{2}} \end{array}\right], \end{array} $$
(50)

where the force vector for the XFEM was obtained using the residual contribution from the Neumann boundary condition in (10). The discretized solution using FEM and XFEM are denoted by \(\hat {u}\) and \(\hat {u}^{*}\) respectively. Note, it is trivial to show following a few calculations that \(\hat {u}^{*}(x_{\Gamma }) = \hat {u}_{3} = L_{1} + L_{2}\) and \({d\hat {u}^{*}(x_{\Gamma })}/{dx_{\Gamma }} = {d\hat {u}_{3}}/{dx_{3}} = 1\), thus proving the equivalence of the two approaches.

To compute the shape sensitivities using the adjoint approach (Section 4), we require the derivatives of the response function with respect to the solution, and derivative of the residual with respect to the solution and the material interface. Following (50), the residual of the two systems is written as

$$\begin{array}{@{}rcl@{}} &&\!\!\!\!\text{FEM:} \\ &&\!\!\!\! \boldsymbol{\mathcal{R}} = \left[\begin{array}{c} \hat{u}_{2}\frac{1}{x_{2} - x_{1}} + \hat{u}_{2}\frac{1}{x_{3} - x_{2}} - \hat{u}_{3}\frac{1}{x_{3} - x_{2}} \\ -\hat{u}_{2}\frac{1}{x_{3} - x_{2}} + \hat{u}_{3}\frac{1}{x_{3} - x_{2}} - 1 \end{array}\right] , \\ &&\!\!\!\!\text{XFEM:} \\ &&\!\!\!\! \boldsymbol{\mathcal{R}} \,=\, \left[\begin{array}{c} \hat{u}_{2}^{*}\frac{1}{x_{2} - x_{1}} + \hat{u}_{2}^{*}\frac{x_{\Gamma} - x_{2}}{(x_{3} - x_{2})^{2}} - \hat{u}_{3}^{*}\frac{x_{\Gamma} - x_{2}}{(x_{3} - x_{2})^{2}} - \frac{x_{3} - x_{\Gamma}}{x_{3} - x_{2}} \\ - \hat{u}_{2}^{*}\frac{x_{\Gamma} - x_{2}}{(x_{3} - x_{2})^{2}} + \hat{u}_{3}^{*}\frac{x_{\Gamma} - x_{2}}{(x_{3} - x_{2})^{2}} - \frac{x_{\Gamma} - x_{2}}{x_{3} - x_{2}} \end{array}\!\right] . \end{array} $$
(51)

The residual derivatives with respect to the material interface are then given by

$$\begin{array}{@{}rcl@{}} &&\text{FEM:} \\ &&\frac{\partial \boldsymbol{\mathcal{R}}}{\partial x_{3}}= \left[\begin{array}{c} -\hat{u}_{2}\frac{1}{(x_{3} - x_{2})^{2}} + \hat{u}_{3}\frac{1}{(x_{3} - x_{2})^{2}} \\ \hat{u}_{2}\frac{1}{(x_{3} - x_{2})^{2}} - \hat{u}_{3}\frac{1}{(x_{3} - x_{2})^{2}} \end{array}\right] , \\ &&\text{XFEM:} \\ &&\frac{\partial \boldsymbol{\mathcal{R}}}{\partial x_{\Gamma}}= \left[\begin{array}{c} \hat{u}_{2}^{*} \frac{1}{(x_{3} - x_{2})^{2}} - \hat{u}_{3}^{*}\frac{1}{(x_{3} - x_{2})^{2}} + \frac{1}{x_{3} - x_{2}} \\ - \hat{u}_{2}^{*}\frac{1}{(x_{3} - x_{2})^{2}} + \hat{u}_{3}^{*}\frac{1}{(x_{3} - x_{2})^{2}} - \frac{1}{x_{3} - x_{2}} \end{array}\right] . \end{array} $$
(52)

The residual derivatives with respect to the solution are given by the left hand side matrices in (50). The derivative of the response function with respect to the solution is same for the two approaches, and is given by,

$$ \frac{\partial \mathcal{Z}}{\partial \hat{\textit{\textbf{u}}}^{*}} = \frac{\partial \mathcal{Z}}{\partial \hat{\textit{\textbf{u}}}} = \left[\begin{array}{c} 1 \\ 0 \end{array}\right]. $$
(53)

The vector of adjoint variables is computed using (23) to give

$$\begin{array}{@{}rcl@{}} \boldsymbol{\lambda} &=& -\left( \frac{\partial \boldsymbol{\mathcal{R}}}{\partial \hat{\textit{\textbf{u}}}} \right)^{-1} \frac{\partial \mathcal{Z}}{\partial \hat{\textit{\textbf{u}}}} = \left[\begin{array}{c} x_{1} - x_{2} \\ x_{1} - x_{2} \end{array}\right] , \\ \boldsymbol{\lambda}^{*} &=& -\left( \frac{\partial \boldsymbol{\mathcal{R}}}{\partial \hat{\textit{\textbf{u}}}^{*}} \right)^{-1} \frac{\partial \mathcal{Z}}{\partial \hat{\textit{\textbf{u}}}^{*}} = \left[\begin{array}{c} x_{1} - x_{2} \\ x_{1} - x_{2} \end{array}\right] , \end{array} $$
(54)

where λ and λ denote the vector of adjoint variables for the FEM case and the XFEM case respectively. The shape sensitivities are readily obtained following a dot product between (54) and (52). Upon comparison of the sensitivities obtained using the two frameworks, a sign change in the sensitivities resulting from (52) is evident, along with the presence of an additional term in the XFEM case. This difference is the result of extrapolating the force vector from the material interface on to the finite element nodes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Villanueva, H. & Maute, K. On shape sensitivities with heaviside-enriched XFEM. Struct Multidisc Optim 55, 385–408 (2017). https://doi.org/10.1007/s00158-016-1640-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1640-x

Keywords

Navigation