Skip to main content
Log in

XFEM schemes for level set based structural optimization

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, some elegant extended finite element method (XFEM) schemes for level set method structural optimization are proposed. Firstly, two-dimension (2D) and three-dimension (3D) XFEM schemes with partition integral method are developed and numerical examples are employed to evaluate their accuracy, which indicate that an accurate analysis result can be obtained on the structural boundary. Furthermore, the methods for improving the computational accuracy and efficiency of XFEM are studied, which include the XFEM integral scheme without quadrature sub-cells and higher order element XFEM scheme. Numerical examples show that the XFEM scheme without quadrature sub-cells can yield similar accuracy of structural analysis while prominently reducing the time cost and that higher order XFEM elements can improve the computational accuracy of structural analysis in the boundary elements, but the time cost is increasing. Therefore, the balance of time cost between FE system scale and the order of element needs to be discussed. Finally, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely used in the recent literature of structural topology optimization. All numerical results demonstrate that the proposed XFEM is a promising structural analysis approach for structural optimization with the level set method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224

    Article  MathSciNet  Google Scholar 

  2. Bendsoe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202

    Article  Google Scholar 

  3. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896

    Article  Google Scholar 

  4. Xie Y M, Steven G P. Evolutionary Structural Optimization. London: Springer-Verlag, 1997

    Book  MATH  Google Scholar 

  5. Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 2000, 163(2): 489–528

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227–246

    Article  MathSciNet  MATH  Google Scholar 

  7. Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu Z, Korvink J G, Huang R. Structure topology optimization: fully coupled level set method via FEMLAB. Structural Multidisciplinary Optimization, 2005, 29(6): 407–417

    Article  MathSciNet  MATH  Google Scholar 

  9. Jang G W, Kim Y Y. Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation. International Journal of Solids and Structures, 2005, 42(11,12): 3591–3609

    Article  MathSciNet  MATH  Google Scholar 

  10. Fish J. The S-version of finite element method. Computers & Structures, 1992, 43(3): 539–547

    Article  MATH  Google Scholar 

  11. Belytschko T, Fish J, Bayliss A. The spectral overlay on finite elements for problems with high gradients. Computer Methods in Applied Mechanics and Engineering, 1990, 81(1): 71–89

    Article  MATH  Google Scholar 

  12. Wang S Y, Wang M Y. A moving superimposed finite element method for structural topology optimization. International Journal for Numerical Methods in Engineering, 2006, 65(11): 1892–1922

    Article  MathSciNet  MATH  Google Scholar 

  13. Belytschko T, Xiao S P, Parimi C. Topology optimization with implicit functions and regularization. International Journal for Numerical Methods in Engineering, 2003, 57(8): 1177–1196

    Article  MATH  Google Scholar 

  14. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

    Article  MathSciNet  MATH  Google Scholar 

  15. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  16. Duysinx P, Van Miegroet L, Jacobs T, Fleury C. Generalized shape optimization using XFEM and level set methods. In: Proceedings of IUTAM Symposium on Topological Design, Optimization of Structures, Machines and Materials. Berlin: Springer, 2006, 23–32

    Chapter  Google Scholar 

  17. Van Miegroet L, Jacobs T, Duysinx P. Recent developments in fixed mesh optimization with X-FEM and level set description. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization. Seoul, Korea, 2007, 1947–1956

    Google Scholar 

  18. Van Miegroet L, Duysinx P. 3D shape optimization with X-FEM and a level set constructive geometry approach. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal, 2009, 1453–1463

  19. Van Miegroet L, Duysinx P. Stress concentration minimization of 2DFilets using X-FEM and level set description. Structural and Multidisciplinary Optimization, 2007, 33(4–5): 425–438

    Article  Google Scholar 

  20. Edwards C S, Kim H A, Budd C J. Smooth boundary based optimization using fixed grid. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 2007, 1789–1798

  21. Lee D K, Lipka A, Ramm E. Nodal-based topology optimization using X-FEM and level sets. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea, 2007, 1987–1996

  22. Wei P, Wang M Y, Xing X H. A study on X-FEM in continuum structural optimization using level set model. Computer Aided Design, 2010, 42(8): 708–719

    Article  Google Scholar 

  23. Ventura G. On the elimination of quadrature sub-cells for discontinuous functions in the eXtended Finite Element Method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761–795

    Article  MathSciNet  MATH  Google Scholar 

  24. Natarajan S, Mahapatra D R, Bordas S P. Integrating strong and weak discontinuities without integration sub-cells and example applications in an XFEM/GFEM framework. International Journal for Numerical Methods in Engineering, 2010, 83: 269–294

    MathSciNet  MATH  Google Scholar 

  25. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741–1760

    Article  MATH  Google Scholar 

  26. Sukumar N, Chopp D L, Moës N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  27. Wells G N, Sluys L J, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. International Journal for Numerical Methods in Engineering, 2002, 53(5): 1235–1256

    Article  Google Scholar 

  28. Stazi F L, Budyn E, Chessa J, Belytschko T. An extended finite element method with higher order elements for curved cracks. Computational Mechanics, 2003, 31(1–2): 38–48

    Article  MATH  Google Scholar 

  29. Legay A, Wang H W, Belytschko T. Strong and weak arbitrary discontinuities in spectral finite elements. International Journal for Numerical Methods in Engineering, 2005, 64(8): 991–1008

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng K W, Fries T P. Higher order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering, 2010, 82: 564–590

    MathSciNet  MATH  Google Scholar 

  31. Sethian J A. Level Set Methods and Fast Marching Methods. London: Cambridge University Press, 1999

    MATH  Google Scholar 

  32. Osher S, Fedkiw R P. Level Set, Methods and Dynamic Implicit Surface. New York: Springer-Verlag, 2002

    Google Scholar 

  33. Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84: 253–304

    MathSciNet  MATH  Google Scholar 

  34. Chessa J, Smolinski P, Belytschko T. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1959–1977

    Article  MathSciNet  MATH  Google Scholar 

  35. Fries T P. The intrinsic XFEM for two-fluid flows. International Journal for Numerical Methods in Fluids, 2009, 60(4): 437–471

    Article  MathSciNet  MATH  Google Scholar 

  36. Moës N, Cloirec M, Cartraud P, Remacle J F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3163–3177

    Article  MATH  Google Scholar 

  37. Duddu R, Bordas S, Chopp D, Moran B. A combined extended finite element and level set method for biofilm growth. International Journal for Numerical Methods in Engineering, 2008, 74(5): 848–870

    Article  MathSciNet  MATH  Google Scholar 

  38. Legay A, Chessa J, Belytschko T. An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17–18): 2070–2087

    Article  MathSciNet  MATH  Google Scholar 

  39. Young W C, Budynas R G. Roark’s Formulas for Stress and Strain. 7th ed. New York: McGraw-Hill, 2002

    Google Scholar 

  40. Peterson R E. Stress Concentration Design Factors. New York: Wiley, 1953

    Google Scholar 

  41. Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 1999

    Book  MATH  Google Scholar 

  42. Belegundu A D, Chandrupatla T R. Optimization Concepts and Applications in Engineering. New Jersey: Prentice Hall, 1999

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, M.Y. & Wei, P. XFEM schemes for level set based structural optimization. Front. Mech. Eng. 7, 335–356 (2012). https://doi.org/10.1007/s11465-012-0351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-012-0351-2

Keywords

Navigation