Skip to main content
Log in

Synthesis of auxetic structures using optimization of compliant mechanisms and a micropolar material model

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Aim of this work is the synthesis of auxetic structures using a topology optimization approach for micropolar (or Cosserat) materials. A distributed compliant mechanism design problem is formulated, adopting a SIMP–like model to approximate the constitutive parameters of 2D micropolar bodies. The robustness of the proposed approach is assessed through numerical examples concerning the optimal design of structures that can expand perpendicularly to an applied tensile stress. The influence of the material characteristic length on the optimal layouts is investigated. Depending on the inherent flexural stiffness of micropolar solids, truss–like solutions typical of Cauchy solids are replaced by curved beam–like material distributions. No homogenization technique is implemented, since the proposed design approach applies to elements made of microstructured material with prescribed properties and not to the material itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson WB, Lakes RS (1994) Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J Mater Sci 29:6413–6419

    Article  Google Scholar 

  • Andreassen E, Lazarov BS, Sigmund O (2014) Design of manufacturable 3D extremal elastic microstructure. Mech Mater 69:1–10

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Meth Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization - theory methods and applications. Springer, New York

    MATH  Google Scholar 

  • Bigoni D, Drugan WJ (2006) Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech 74(4):741–753

    Article  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Taliercio A (2012) Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization. Struct Multidiscip Optim 46(4):549–560

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non–linear elastic structures and compliant mechanisms. Comput Meth Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Cadman J, Zhou S, Chen Y, Li Q (2012) On design of multi-functional microstructural materials. J Mater Sci 48:1–16

    Article  Google Scholar 

  • Coelho PG, Cardoso JB, Fernandes PR, Rodrigues HC (2011) Parallel computing techniques applied to the simultaneous design of structure and material. Adv Eng Software 42:219–227

    Article  MATH  Google Scholar 

  • Corigliano A, De Masi B, Frangi A, Comi C, Villa A, Marchi M (2004) Mechanical characterization of polysilicon through on-chip tensile tests. J Microelectromech Syst 13(2):200–219

    Article  Google Scholar 

  • de Borst R, Sluys LJ (1991) Localization in a Cosserat continuum under static and dynamic loading conditions. Comput Meth Appl Mech Eng 90:805–827

    Article  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  • Diaz A, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41:163–177

    Article  MathSciNet  MATH  Google Scholar 

  • Elipe JCA, Lantada AD (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21:1–12

    Google Scholar 

  • Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 15:909–923

    MathSciNet  MATH  Google Scholar 

  • Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking!. Adv Mater 12(9):617–628

    Article  Google Scholar 

  • Fatemi J, Onck P R, Poort G, Van Keulen F (2003) Cosserat moduli of anisotropic cancellous bone: a micromechanical analysis. J Phys IV France 105:273–280

    Article  Google Scholar 

  • Forest S, Sab K (1998) Cosserat overall modeling of heterogeneous materials. Mech Res Commun 25 (4):449–454

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S, Barbe F, Cailletaud G (2000) Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int J Solids Struct 37(46-47):7105–7126

    Article  MathSciNet  MATH  Google Scholar 

  • Gaspar N, Smith CW, Evans KE (2009) Auxetic behaviour and anisotropic heterogeneity. Acta Mater 57(3):875–880

    Article  Google Scholar 

  • Gauthier RD, Jahsman WE (1975) A quest for micropolar elastic constants. J Appl Mech ASME 42:369–374

    Article  MATH  Google Scholar 

  • Gei M, Rovati M, Veber D (2006) Effect of internal length scale on optimal topologies for Cosserat continua. In: Bendsøe MP et al. (eds) IUTAM symposium on topological design optimization of structures, machines and materials: status and perspectives, pp 157–166

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Koskinent J, Steinwall JE, Soave R, Johnson HH (1993) Microtensile testing of free-standing polysilicon fibers of various grain sizes. J Micromech Microeng 3:13–17

    Article  Google Scholar 

  • Lakes RS (1985) A pathological situation in micropolar elasticity. J Appl Mech 52:234–235

    Article  Google Scholar 

  • Lakes RS (1993) Strongly Cosserat elastic lattice and foam materials for enhanced toughness. Cell Polym 12 (17-30):157–166

    Google Scholar 

  • Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with microstructure. J. Wiley, pp 1–25

  • Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micromechanisms and structures with negative poisson’s ratio. J Microelectromech Syst 6:99–105

    Article  Google Scholar 

  • Levy O, Krylov S, Goldfarb I (2006) Design considerations for negative Poisson ratio structures under large deflection for MEMS applications. Smart Mater Struct 15:1459–1466

    Article  Google Scholar 

  • Li X, Liu Q, Zhang J (2010) A micro-macro homogenization approach for discrete particle assembly -Cosserat continuum modeling of granular materials. Int J Solids Struct 47(2):291–303

    Article  MATH  Google Scholar 

  • Liu K, Tovar A (2014) An efficient 3D topology optimization code written in matlab. Struct Multidiscip Optim 50(6):1175– 1196

    Article  MathSciNet  Google Scholar 

  • Liu S, Su W (2010) Topology optimization of couple-stress material structures. Struct Multidiscip Optim 40:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Mariani S, Martini R, Ghisi A, Corigliano A, Beghi M (2011) Overall elastic properties of polysilicon films: a statistical investigation of the effects of polycrystal morphology. Int J Multiscale Com 9(3):327–346

    Article  Google Scholar 

  • Nishiwaki S, Frecker M I, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using thehomogenization method. Int J Numer Meth Engng 42:535–559

    Article  MATH  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Meth Engng 50:2683–2705

    Article  MATH  Google Scholar 

  • Providas E, Kattis MA (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80:2059–2069

    Article  Google Scholar 

  • Rovati M, Veber D (2007) Optimal topologies for micropolar solids. Struct Multidiscip Optim 33:47–59

    Article  Google Scholar 

  • Sharbati E, Naghdabadi R (2006) Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput Mat Science 38:303–315

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct and Mach 25:493–524

    Article  Google Scholar 

  • Sigmund O (2000) A new class of extremal composites. J Mechan Ph Solids 48:397–428

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8:365– 379

    Article  Google Scholar 

  • Su W, Liu S (2015) Topology design for maximization of fundamental frequency of couple-stress continuum. Struct Multidiscip Optim 53(3):395–408

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) Method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24:359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Veber D, Taliercio A (2011) Topology optimization of three-dimensional non-centrosymmetric micropolar bodies. Struct Multidiscip Optim 45(4):575–587

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Mutltidiscip Opt 43(6):767–784

    Article  MATH  Google Scholar 

  • Xia L, Li Z-M, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52:1229–1241

    Article  MathSciNet  Google Scholar 

  • Yang W, Li Z-M, Shi W, Xie B-H, Yang M-B (2004) Review on auxetic materials. J of Mater Science 39:3269–3279

    Article  Google Scholar 

  • Yuan X, Tomita Y (2001) Effective properties of Cosserat composites with periodic microstructure. Mech Res Commun 28(3):265– 270

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bruggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruggi, M., Zega, V. & Corigliano, A. Synthesis of auxetic structures using optimization of compliant mechanisms and a micropolar material model. Struct Multidisc Optim 55, 1–12 (2017). https://doi.org/10.1007/s00158-016-1589-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1589-9

Keywords

Navigation