Skip to main content

On Multi-scale Computational Design of Structural Materials Using the Topological Derivative

  • Chapter
  • First Online:
Advances in Computational Plasticity

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 46))

  • 2970 Accesses

Abstract

This work deals on the optimization and computational material design using the topological derivative concept. The necessary details to obtain the anisotropic topological derivative are first presented. In the context of multi-scale topology optimization, it is crucial since the homogenization of the constitutive tensor of a micro-structure confers in general an anisotropic response. In addition, this work addresses the multi-scale material design problem in which the goal is then to minimize the structural (macro-scale) compliance by appropriately designing the material distribution (micro-structure) at a lower scale (micro-scale). To overcome the exorbitant computational cost, a consultation during the iterative process of a discrete material catalog (computed off-line) of micro-scale optimized topologies (Computational Vademecum) is proposed in this work. This results into a large diminution of the resulting computational costs, which make affordable the proposed methodology for multi-scale computational material design. Some representative examples assess the performance of the considered approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 (Springer Science & Business Media, 2012)

    Google Scholar 

  2. H. Ammari, H. Kang, Polarization and moment tensors with applications to inverse problems and effective medium theory. Applied Mathematical Sciences, vol. 162 (Springer, New York, 2007)

    Google Scholar 

  3. S. Amstutz, S.M. Giusti, A.A. Novotny, E.A. De Souza Neto, Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84(6), 733–756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Amstutz, H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)

    Google Scholar 

  5. M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Cardone, S.A. Nazarov, J. Sokolowski, Asymptotic analysis, polarization matrices, and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48(6), 3925–3961 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, A. Huerta, PGD-Based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1), 31–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. E.A. De Souza Neto, R.A. Feijóo, Variational foundations of large strain multiscale solid constitutive models: kinematical formulation. Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques-Scale Techniques, pp. 341–378, 2010

    Google Scholar 

  9. D. Esteves Campeão, S. Miguel Giusti, A. Antonio Novotny, Topology design of plates considering different volume control methods. Eng. Comput. 31(5), 826–842 (2014)

    Google Scholar 

  10. A. Ferrer, Multi-scale topological design of structural materials: an integrated approach. Ph.D. thesis, Universitat Politècnica de Catalunya, 2017

    Google Scholar 

  11. S.M. Giusti, L.A.M. Mello, E.C.N. Silva, Piezoresistive device optimization using topological derivative concepts. Struct. Multidiscip. Optim. 50(3), 453–464 (2014)

    Article  MathSciNet  Google Scholar 

  12. S.M. Giusti, A. Ferrer, J. Oliver, Topological sensitivity analysis in heterogeneous anisotropic elasticity problem. Theoretical and computational aspects. Comput. Methods Appl. Mech. Eng. 311, 134–150 (2016)

    Google Scholar 

  13. J.A. Hernandez, J. Oliver, A.E. Huespe, M.A. Caicedo, J.C. Cante, High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Eng. 276, 149–189 (2014)

    Article  MathSciNet  Google Scholar 

  14. J. Kato, D. Yachi, K. Terada, T. Kyoya, Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis. Struct. Multidiscip. Optim. 49(4), 595–608 (2014)

    Article  MathSciNet  Google Scholar 

  15. A.A. Novotny, J. Sokolowski, Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics (Springer, Berlin, 2013)

    Google Scholar 

  16. J. Sokolowski, A. Zochowski, The topological derivative method in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Xia, P. Breitkopf, Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278, 524–542 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement n. 320815, Advanced Grant Project COMP-DES-MAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oliver, J., Ferrer, A., Cante, J.C., Giusti, S.M., Lloberas-Valls, O. (2018). On Multi-scale Computational Design of Structural Materials Using the Topological Derivative. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics