Skip to main content

Advertisement

Log in

Clinical review: intensive care unit acquired weakness

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

Abstract

A substantial number of patients admitted to the ICU because of an acute illness, complicated surgery, severe trauma, or burn injury will develop a de novo form of muscle weakness during the ICU stay that is referred to as “intensive care unit acquired weakness” (ICUAW). This ICUAW evoked by critical illness can be due to axonal neuropathy, primary myopathy, or both. Underlying pathophysiological mechanisms comprise microvascular, electrical, metabolic, and bioenergetic alterations, interacting in a complex way and culminating in loss of muscle strength and/or muscle atrophy. ICUAW is typically symmetrical and affects predominantly proximal limb muscles and respiratory muscles, whereas facial and ocular muscles are often spared. The main risk factors for ICUAW include high severity of illness upon admission, sepsis, multiple organ failure, prolonged immobilization, and hyperglycemia, and also older patients have a higher risk. The role of corticosteroids and neuromuscular blocking agents remains unclear. ICUAW is diagnosed in awake and cooperative patients by bedside manual testing of muscle strength and the severity is scored by the Medical Research Council sum score. In cases of atypical clinical presentation or evolution, additional electrophysiological testing may be required for differential diagnosis. The cornerstones of prevention are aggressive treatment of sepsis, early mobilization, preventing hyperglycemia with insulin, and avoiding the use parenteral nutrition during the first week of critical illness. Weak patients clearly have worse acute outcomes and consume more healthcare resources. Recovery usually occurs within weeks or months, although it may be incomplete with weakness persisting up to 2 years after ICU discharge. Prognosis appears compromised when the cause of ICUAW involves critical illness polyneuropathy, whereas isolated critical illness myopathy may have a better prognosis. In addition, ICUAW has shown to contribute to the risk of 1-year mortality. Future research should focus on new preventive and/or therapeutic strategies for this detrimental complication of critical illness and on clarifying how ICUAW contributes to poor longer-term prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARDS:

Acute respiratory distress syndrome

CIM:

Critical illness myopathy

CIP:

Critical illness polyneuropathy

CMAP:

Compound muscle action potential

EMG:

Electromyography

EMS:

Electrical muscle stimulation

GDF-15:

Growth and differentiation factor-15

ICUAW:

Intensive care unit acquired weakness

MOF:

Multiple organ failure

MRC:

Medical Research Council

NCS:

Nerve conduction studies

PICS:

Post intensive care syndrome

SIRS:

Systemic inflammatory response syndrome

SNAP:

Sensory nerve action potential

VIDD:

Ventilator-induced diaphragmatic dysfunction

References

  1. Osler W. Principles and practice of medicine. New York: Appleton D; 1892.

    Google Scholar 

  2. Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry. 1984;47:1223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zochodne DW, Bolton CF, Thompson RT, Driedger AA, Hahn AF, Gilbert JJ. Myopathy in critical illness. Muscle Nerve. 1986;9:652.

    Google Scholar 

  4. Bednarik J, Lukas Z, Vondracek P. Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med. 2003;29:1505–14.

    Article  PubMed  Google Scholar 

  5. Needham DM, Davidson J, Cohen H, Hopkins RO, Weinert C, Wunsch H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med. 2012;40:502–9.

    Article  PubMed  Google Scholar 

  6. Ali NA, O'Brien Jr JM, Hoffmann SP, Phillips G, Garland A, Finley JC, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178:261–8.

    Article  PubMed  Google Scholar 

  7. Sharshar T, Bastuji-Garin S, Stevens RD, Durand MC, Malissin I, Rodriguez P, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37:3047–53.

    Article  PubMed  Google Scholar 

  8. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–67.

    Article  PubMed  Google Scholar 

  9. Mirzakhani H, Williams JN, Mello J, Joseph S, Meyer MJ, Waak K, et al. Muscle weakness predicts pharyngeal dysfunction and symptomatic aspiration in long-term ventilated patients. Anesthesiology. 2013;119:389–97.

    Article  PubMed  Google Scholar 

  10. Nanas S, Kritikos K, Angelopoulos E, Siafaka A, Tsikriki S, Poriazi M, et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008;118:175–81.

    Article  CAS  PubMed  Google Scholar 

  11. Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of ICU-acquired weakness: a cohort study and propensity matched analysis. Am J Respir Crit Care Med. 2014;190:410–20.

    Article  PubMed  Google Scholar 

  12. Tzanis G, Vasileiadis I, Zervakis D, Karatzanos E, Dimopoulos S, Pitsolis T, et al. Maximum inspiratory pressure, a surrogate parameter for the assessment of ICU-acquired weakness. BMC Anesthesiol. 2011;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bercker S, Weber-Carstens S, Deja M, Grimm C, Wolf S, Behse F, et al. Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:711–5.

    Article  PubMed  Google Scholar 

  14. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a 2-year longitudinal prospective study. Crit Care Med. 2013;42:849–59.

    Article  Google Scholar 

  15. Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G, Tonin P, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–82.

    Article  CAS  PubMed  Google Scholar 

  16. Fenzi F, Latronico N, Refatti N, Rizzuto N. Enhanced expression of E-selectin on the vascular endothelium of peripheral nerve in critically ill patients with neuromuscular disorders. Acta Neuropathol (Berl). 2003;106:75–82.

    Article  CAS  Google Scholar 

  17. Bolton CF. Neuromuscular manifestations of critical illness. Muscle Nerve. 2005;32:140–63.

    Article  PubMed  Google Scholar 

  18. Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, et al. Impact of intensive insulin therapy on neuromuscular complications and ventilator-dependency in MICU. Am J Respir Crit Care Med. 2007;175:480–9.

    Article  CAS  PubMed  Google Scholar 

  19. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet. 2005;365:53–9.

    Article  CAS  PubMed  Google Scholar 

  20. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;114:1187–95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, et al. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest. 2009;119:1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Batt J, Dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med. 2013;187:238–46.

    Article  PubMed  Google Scholar 

  23. Friedrich OR, Van den Berghe G, Van Horebeek I, Hermans G, Rich MM, Larsson L. The sick and the weak: neuropathies/myopathies in the critically ill—cellular mechanisms of complex disease entities in the ICU. Physiol Rev. 2015, in press.

  24. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–600.

    Article  CAS  PubMed  Google Scholar 

  25. Derde S, Hermans G, Derese I, Guiza F, Hedstrom Y, Wouters PJ, et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med. 2012;40:79–89.

    Article  PubMed  Google Scholar 

  26. Wollersheim T, Woehlecke J, Krebs M, Hamati J, Lodka D, Luther-Schroeder A, et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med. 2014;40:528–38.

    Article  CAS  PubMed  Google Scholar 

  27. Bloch S, Polkey MI, Griffiths M, Kemp P. Molecular mechanisms of intensive care unit acquired weakness. Eur Respir J. 2012;39:1000–11.

    Article  CAS  PubMed  Google Scholar 

  28. Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, et al. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med. 2013;187:387–96.

    Article  CAS  PubMed  Google Scholar 

  29. Bloch SA, Lee JY, Syburra T, Rosendahl U, Griffiths MJ, Kemp PR, et al. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax. 2015;70:219–28.

    Article  CAS  PubMed  Google Scholar 

  30. Ackermann KA, Bostock H, Brander L, Schroder R, Djafarzadeh S, Tuchscherer D, et al. Early changes of muscle membrane properties in porcine faecal peritonitis. Crit Care. 2014;18:484.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weber-Carstens S, Koch S, Spuler S, Spies CD, Bubser F, Wernecke KD, et al. Nonexcitable muscle membrane predicts intensive care unit-acquired paresis in mechanically ventilated, sedated patients. Crit Care Med. 2009;37:2632–7.

    Article  PubMed  Google Scholar 

  32. Rossignol B, Gueret G, Pennec JP, Morel J, Rannou F, Giroux-Metges MA, et al. Effects of chronic sepsis on contractile properties of fast twitch muscle in an experimental model of critical illness neuromyopathy in the rat. Crit Care Med. 2008;36:1855–63.

    Article  PubMed  Google Scholar 

  33. Zink W, Kaess M, Hofer S, Plachky J, Zausig YA, Sinner B, et al. Alterations in intracellular Ca2+−homeostasis of skeletal muscle fibers during sepsis. Crit Care Med. 2008;36:1559–63.

    Article  CAS  PubMed  Google Scholar 

  34. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    Article  CAS  PubMed  Google Scholar 

  35. Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621–9.

    Article  PubMed  Google Scholar 

  36. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10:507–15.

    Article  CAS  PubMed  Google Scholar 

  37. Zochodne DW, Bolton CF, Wells GA, Gilbert JJ, Hahn AF, Brown JD, et al. Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain. 1987;110(Pt 4):819–41.

    Article  PubMed  Google Scholar 

  38. Witt NJ, Zochodne DW, Bolton CF, Grand'Maison F, Wells G, Young GB, et al. Peripheral nerve function in sepsis and multiple organ failure. Chest. 1991;99:176–84.

    Article  CAS  PubMed  Google Scholar 

  39. Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar A, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–96.

    Article  CAS  PubMed  Google Scholar 

  40. Bednarik J, Vondracek P, Dusek L, Moravcova E, Cundrle I. Risk factors for critical illness polyneuromyopathy. J Neurol. 2005;252:343–51.

    Article  CAS  PubMed  Google Scholar 

  41. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  42. de Letter MA, Schmitz PI, Visser LH, Verheul FA, Schellens RL, Op de Coul DA, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med. 2001;29:2281–6.

    Article  PubMed  Google Scholar 

  43. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology. 2005;64:1348–53.

    Article  PubMed  CAS  Google Scholar 

  44. Weber-Carstens S, Deja M, Koch S, Spranger J, Bubser F, Wernecke KD, et al. Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care. 2010;14:R119.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Campellone JV, Lacomis D, Kramer DJ, Van Cott AC, Giuliani MJ. Acute myopathy after liver transplantation. Neurology. 1998;50:46–53.

    Article  CAS  PubMed  Google Scholar 

  46. Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146:583–9.

    Article  CAS  PubMed  Google Scholar 

  47. MacFarlane IA, Rosenthal FD. Severe myopathy after status asthmaticus. Lancet. 1977;2:615.

    Article  CAS  PubMed  Google Scholar 

  48. Massa R, Carpenter S, Holland P, Karpati G. Loss and renewal of thick myofilaments in glucocorticoid-treated rat soleus after denervation and reinnervation. Muscle Nerve. 1992;15:1290–8.

    Article  CAS  PubMed  Google Scholar 

  49. Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.

    Article  CAS  PubMed  Google Scholar 

  50. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    Article  CAS  PubMed  Google Scholar 

  51. De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35:2007–15.

    Article  PubMed  Google Scholar 

  52. Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17:R120.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact—a prospective study. Am J Respir Crit Care Med. 2013;188:213–19.

    Article  PubMed  Google Scholar 

  54. Zifko UA, Zipko HT, Bolton CF. Clinical and electrophysiological findings in critical illness polyneuropathy. J Neurol Sci. 1998;159:186–93.

    Article  CAS  PubMed  Google Scholar 

  55. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14:R127.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–71.

    Article  CAS  PubMed  Google Scholar 

  57. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.

    Article  CAS  PubMed  Google Scholar 

  58. Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: ventilator-induced diaphragmatic dysfunction—human studies confirm animal model findings! Crit Care. 2011;15:206.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of medical research council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012;45:18–25.

    Article  PubMed  Google Scholar 

  60. Bolton CF, Laverty DA, Brown JD, Witt NJ, Hahn AF, Sibbald WJ. Critically ill polyneuropathy: electrophysiological studies and differentiation from Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 1986;49:563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Latronico N, Filosto M, Fagoni N, Gheza L, Guarneri B, Todeschini A, et al. Small nerve fiber pathology in critical illness. PLoS One. 2013;8, e75696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Skorna M, Kopacik R, Vlckova E, Adamova B, Kostalova M, Bednarik J. Small nerve fiber pathology in critical illness documented by serial skin biopsies. Muscle Nerve. 2014. doi:10.1002/mus.24489.

  63. Angel MJ, Bril V, Shannon P, Herridge MS. Neuromuscular function in survivors of the acute respiratory distress syndrome. Can J Neurol Sci. 2007;34:427–32.

    Article  PubMed  Google Scholar 

  64. Wieske L, Chan Pin Yin DR, Verhamme C, Schultz MJ, van Schaik IN, Horn J. Autonomic dysfunction in ICU-acquired weakness: a prospective observational pilot study. Intensive Care Med. 2013;39:1610–7.

    Article  CAS  PubMed  Google Scholar 

  65. Wieske L, Kiszer ER, Schultz MJ, Verhamme C, van Schaik IN, Horn J. Examination of cardiovascular and peripheral autonomic function in the ICU: a pilot study. J Neurol. 2013;260:1511–7.

    Article  CAS  PubMed  Google Scholar 

  66. Bolton C, Thompson J, Bernardi L, Voll C, Young B. The cardiac R-R variation and sympathetic skin response in the intensive care unit. Can J Neurol Sci. 2007;34:313–15.

    Article  PubMed  Google Scholar 

  67. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014;370:1626–35.

    Article  CAS  PubMed  Google Scholar 

  68. Hough CL, Lieu BK, Caldwell ES. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care. 2011;15:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Connolly BA, Jones GD, Curtis AA, Murphy PB, Douiri A, Hopkinson NS, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study. Crit Care. 2013;17:R229.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hermans G, Gosselink R. Should we abandon manual muscle strength testing in the ICU? Crit Care. 2011;15:127.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vanpee G, Hermans G, Segers J, Gosselink R. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42:701–11.

    Article  PubMed  Google Scholar 

  72. Hermans G, Clerckx B, Vanhullebusch T, Segers J, Vanpee G, Robbeets C, et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012;45:18–25.

    Article  PubMed  Google Scholar 

  73. Vanpee G, Segers J, Van Mechelen H, Wouters P, Van den Berghe G, Hermans G, et al. The interobserver agreement of handheld dynamometry for muscle strength assessment in critically ill patients. Crit Care Med. 2011;39:1929–34.

    Article  PubMed  Google Scholar 

  74. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–9.

    Article  PubMed  Google Scholar 

  75. Grimm A, Teschner U, Porzelius C, Ludewig K, Zielske J, Witte OW, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care. 2013;17:R227.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Freilich RJ, Kirsner RL, Byrne E. Isometric strength and thickness relationships in human quadriceps muscle. Neuromuscul Disord. 1995;5:415–22.

    Article  CAS  PubMed  Google Scholar 

  77. Chi-Fishman G, Hicks JE, Cintas HM, Sonies BC, Gerber LH. Ultrasound imaging distinguishes between normal and weak muscle. Arch Phys Med Rehabil. 2004;85:980–6.

    Article  PubMed  Google Scholar 

  78. Eikermann M, Koch G, Gerwig M, Ochterbeck C, Beiderlinden M, Koeppen S, et al. Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Med. 2006;32:251–9.

    Article  CAS  PubMed  Google Scholar 

  79. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624

  80. Truwit JD, Marini JJ. Validation of a technique to assess maximal inspiratory pressure in poorly cooperative patients. Chest. 1992;102:1216–9.

    Article  CAS  PubMed  Google Scholar 

  81. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–41.

    Article  PubMed  Google Scholar 

  82. Lefaucheur JP, Nordine T, Rodriguez P, Brochard L. Origin of ICU acquired paresis determined by direct muscle stimulation. J Neurol Neurosurg Psychiatry. 2006;77:500–6.

    Article  PubMed  Google Scholar 

  83. GiVITI Study Investigators, Latronico N, Nattino G, Guarneri B, Fagoni N, Amantini A, et al. Validation of the peroneal nerve test to diagnose critical illness polyneuropathy and myopathy in the intensive care unit: the multicentre Italian CRIMYNE-2 diagnostic accuracy study. F1000Research. 2014;3:127.

    Article  Google Scholar 

  84. Moss M, Yang M, Macht M, Sottile P, Gray L, McNulty M, et al. Screening for critical illness polyneuromyopathy with single nerve conduction studies. Intensive Care Med. 2014;40:683–90.

    Article  PubMed  Google Scholar 

  85. Wieske L, Witteveen E, Petzold A, Verhamme C, Schultz MJ, van Schaik IN, et al. Neurofilaments as a plasma biomarker for ICU-acquired weakness: an observational pilot study. Crit Care. 2014;18:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30:1117–21.

    Article  PubMed  Google Scholar 

  87. Martens EP, Pestman WR, de BA, Belitser SV, Klungel OH. Systematic differences in treatment effect estimates between propensity score methods and logistic regression. Int J Epidemiol. 2008;37:1142–7.

    Article  PubMed  Google Scholar 

  88. Bolton CF, Breuer AC. Critical illness polyneuropathy. Muscle Nerve. 1999;22:419–24.

    Article  CAS  PubMed  Google Scholar 

  89. Latronico N, Shehu I, Seghelini E. Neuromuscular sequelae of critical illness. Curr Opin Crit Care. 2005;11:381–90.

    Article  PubMed  Google Scholar 

  90. Needham DM, Dinglas VD, Morris PE, Jackson JC, Hough CL, Mendez-Tellez PA, et al. Physical and cognitive performance of patients with acute lung injury 1 year after initial trophic versus full enteral feeding. EDEN trial follow-up. Am J Respir Crit Care Med. 2013;188:567–76.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Intiso D, Amoruso L, Zarrelli M, Pazienza L, Basciani M, Grimaldi G, et al. Long-term functional outcome and health status of patients with critical illness polyneuromyopathy. Acta Neurol Scand. 2011;123:211–9.

    Article  CAS  PubMed  Google Scholar 

  92. Koch S, Wollersheim T, Bierbrauer J, Haas K, Morgeli R, Deja M, et al. Long-term recovery in critical illness myopathy is complete, contrary to polyneuropathy. Muscle Nerve. 2014;50:431–6.

    Article  PubMed  Google Scholar 

  93. Guarneri B, Bertolini G, Latronico N. Long-term outcome in patients with critical illness myopathy or neuropathy: the Italian multicentre CRIMYNE study. J Neurol Neurosurg Psychiatry. 2008;79:838–41.

    Article  CAS  PubMed  Google Scholar 

  94. Koch S, Spuler S, Deja M, Bierbrauer J, Dimroth A, Behse F, et al. Critical illness myopathy is frequent: accompanying neuropathy protracts ICU discharge. J Neurol Neurosurg Psychiatry. 2011;82:287–93.

    Article  PubMed  Google Scholar 

  95. Herridge MS, Tansey CM, Matte A, Tomlinson G, az-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–304.

    Article  CAS  PubMed  Google Scholar 

  96. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al Saidi F, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348:683–93.

    Article  PubMed  Google Scholar 

  97. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014;42:849–59.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Needham DM, Dinglas VD, Bienvenu OJ, Colantuoni E, Wozniak AW, Rice TW, et al. One year outcomes in patients with acute lung injury randomised to initial trophic or full enteral feeding: prospective follow-up of EDEN randomised trial. BMJ. 2013;346:f1532.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bienvenu OJ, Colantuoni E, Mendez-Tellez PA, Dinglas VD, Shanholtz C, Husain N, et al. Depressive symptoms and impaired physical function after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med. 2012;185:517–24.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barnato AE, Albert SM, Angus DC, Lave JR, Degenholtz HB. Disability among elderly survivors of mechanical ventilation. Am J Respir Crit Care Med. 2011;183:1037–42.

    Article  PubMed  Google Scholar 

  102. Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme Jr JF. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:340–7.

    Article  PubMed  Google Scholar 

  103. Pandharipande PP, Girard TD, Ely EW. Long-term cognitive impairment after critical illness. N Engl J Med. 2014;370:185–6.

    PubMed  Google Scholar 

  104. Herridge MS, Batt J, Santos CD. ICU-acquired weakness, morbidity, and death. Am J Respir Crit Care Med. 2014;190:360–2.

    Article  PubMed  Google Scholar 

  105. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  PubMed  Google Scholar 

  106. Wernerman J, Desaive T, Finfer S, Foubert L, Furnary A, Holzinger U, et al. Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit Care. 2014;18:226.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Reade MC, Finfer S. Sedation and delirium in intensive care. N Engl J Med. 2014;370:1567.

    Article  CAS  PubMed  Google Scholar 

  108. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36:2238–43.

    Article  PubMed  Google Scholar 

  109. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–505.

    Article  PubMed  Google Scholar 

  110. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–82.

    Article  PubMed  Google Scholar 

  111. The TEAM. Study investigators, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, Denehy L, Harrold M, Higgins A, Presneill J, Saxena M, Skinner E, Young P, Webb S. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19:81.

    Article  Google Scholar 

  112. Hodgin KE, Nordon-Craft A, McFann KK, Mealer ML, Moss M. Physical therapy utilization in intensive care units: results from a national survey. Crit Care Med. 2009;37:561–6. quiz 566–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437–46.

    Article  PubMed  Google Scholar 

  114. Mehrholz J, Pohl M, Kugler J, Burridge J, Muckel S, Elsner B. Physical rehabilitation for critical illness myopathy and neuropathy. Cochrane Database Syst Rev. 2015;3, CD010942.

    Google Scholar 

  115. Eikermann M, Latronico N. What is new in prevention of muscle weakness in critically ill patients? Intensive Care Med. 2013;39:2200–3.

    Article  PubMed  Google Scholar 

  116. Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2014;1, CD006832.

    Google Scholar 

  117. Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med. 2013;11:137.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation-Flanders (FWO), Belgium (G.0399.12, G.0592.12). GH received a Postdoctoral Fellowship from the Clinical Research Fund (KOF) of the University Hospitals Leuven, Belgium. GVdB, via the University of Leuven, receives structural research financing via the Methusalem program, funded by the Flemish Government (METH08/07), and holds an ERC Advanced grant (AdvG-2012-321670) from the Ideas Program of the EU FP7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greet Hermans.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermans, G., Van den Berghe, G. Clinical review: intensive care unit acquired weakness. Crit Care 19, 274 (2015). https://doi.org/10.1186/s13054-015-0993-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0993-7

Keywords

Navigation