Skip to main content
Log in

Use of bladder pressure to correct for the effect of expiratory muscle activity on central venous pressure

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To assess whether subtracting the expiratory change in intra-abdominal (bladder) pressure (ΔIAP) from central venous pressure (CVP) provides a reliable estimate of transmural CVP in spontaneously breathing patients with expiratory muscle activity.

Design and setting

Prospective observational study in a medical ICU.

Patients

Twenty-four spontaneously breathing patients with central venous and bladder catheters: 18 with no clinical evidence of active expiration (group 1) and 6 with active expiration (group 2).

Interventions

Patients in group 1 were coached to change their breathing pattern to one of active expiration for several breaths; those in group 2 were asked to sip water through a straw to briefly interrupt active expiration.

Measurements and results

During active expiration end-expiratory CVP (uncorrected CVP) and ΔIAP were measured; ΔIAP was subtracted from uncorrected CVP to obtain corrected CVP. End-expiratory CVP during relaxed breathing (best CVP) was assumed to represent the best estimate of transmural CVP. The absolute difference between corrected CVP and best CVP was much less than the difference between uncorrected CVP and best CVP (2.3 ± 2.0 vs. 12.5 ± 4.7 mmHg).

Conclusions

In patients with active expiration, subtracting ΔIAP from end-expiratory CVP yields a more reliable (and lower) estimate of transmural CVP than does the uncorrected CVP value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151

    Article  PubMed  CAS  Google Scholar 

  2. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555

    Article  PubMed  Google Scholar 

  3. Magder S, Georgiadis G, Cheone T (1992) Respiratory variations in right atrial pressure predicts the response to fluid challenge. J Crit Care 7:76–85

    Article  Google Scholar 

  4. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  5. Magder S (2006) Central venous pressure: a useful but not so simple measurement. Crit Care Med 34:2224–2227

    Article  PubMed  Google Scholar 

  6. Rice DL, Awe RJ, Gaasch WH, Alexander JK, Jenkins DE (1974) Wedge pressure measurements in obstructive pulmonary disease. Chest 66:628–632

    PubMed  CAS  Google Scholar 

  7. Shuster DP, Seeman MD (1983) Temporary muscle paralysis for accurate measurement of pulmonary artery occlusion pressure. Chest 84:593–597

    Google Scholar 

  8. Hoyt JD, Leatherman JW (1997) Interpretation of the pulmonary artery occlusion pressure in mechanically ventilated patients with large respiratory excursions in intrathoracic pressure. Intensive Care Med 23:1125–1131

    Article  PubMed  CAS  Google Scholar 

  9. Tzelepis GE, Nasiff L, McCool D, Hammond J (1996) Transmission of pressure within the abdomen. J Appl Physiol 81:1111–1114

    PubMed  CAS  Google Scholar 

  10. Mailbrain ML (2004) Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med 30:357–371

    Article  Google Scholar 

  11. Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D'Amours S, Wendon J, Hillman K, Johansson K, Kolkman K, Wilmer A (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med 32:1722–1732

    Article  PubMed  Google Scholar 

  12. Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, DeWaele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D'Amours S, Wendon J, Hillman K, Wilmer A (2007) Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. Recommendations. Intensive Care Med 33:951–962

    Article  PubMed  Google Scholar 

  13. Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, Malcangi V, Bihari D, Innes R, Cohen J, Singer P, Japiassu A, Kurtop E, De Keulenaer BL, Daelemans R, Del Turco M, Cosimini P, Ranieri M, Jacquet L, Laterre PF, Gattinoni L (2004) Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med 30:822–829

    Article  PubMed  Google Scholar 

  14. Zakynthinos SG, Vassilakopoulos T, Zakynthinos E, Roussos C, Tzelepis GE (1999) Correcting static intrinsic positive end-expiratory pressure for expiratory muscle contraction. Am J Respir Crit Care Med 160:785–790

    PubMed  CAS  Google Scholar 

  15. Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151:562–569

    PubMed  CAS  Google Scholar 

  16. Zakthynthinos S, Vassilakopoulus E, Zakynthinos E, Roussos C (1997) Accurate measurement of intrinsic positive end-expiratory pressure: how to detect and correct for expiratory muscle activity. Eur Respir J 10:522–529

    Google Scholar 

  17. Gorini M, Misuri G, Duranti R, Iandelli I, Mancini M, Scano G (1997) Abdominal muscle recruitment and PEEPi during bronchoconstriction in chronic obstructive pulmonary disease. Thorax 52:355–361

    Article  PubMed  CAS  Google Scholar 

  18. Zakthynthinos S, Vassilakopoulus E, Zakynthinos E, Mavrommatis A, Roussos C (2000) Contribution of expiratory muscle pressure to dynamic intrinsic positive end-expiratory pressure. Validation using the Campbell diagram. Am J Respir Crit Care Med 162:1633–1640

    Google Scholar 

  19. Qureshi AS, Shapiro RS, Leatherman JW (2005) Use of bladder pressure to correct for the effects of active expiration on measurements of right atrial pressure (abstract). Am J Respir Crit Care Med (Suppl) 171:A422

    Google Scholar 

  20. Leatherman JW, Marini JJ (2005) Clinical use of the pulmonary artery catheter. In: Hall JB, Schmidt GA, Wood LDH (eds) Principles of critical care, 3rd edn. McGraw-Hill, New York, pp 146–150

    Google Scholar 

  21. Sharkey SW (1997) A guide to the interpretation of Hemodynamic monitoring in the coronary care unit. Lippincott-Raven, Philadelphia

    Google Scholar 

  22. Comroe J (1965) Physiology of respiration. Year Book, Chicago

    Google Scholar 

  23. Walling PT, Savege TM (1976) A Comparison of oesophageal and central venous pressures in the measurement of transpulmonary pressure change. Br J Anaesth 48:475–479

    Article  PubMed  CAS  Google Scholar 

  24. Flemale A, Gillard C, Dierckx JP (1988) Comparison of central venous, oesophageal and mouth occlusion pressure with water filled catheters for estimating pleural pressure changes in healthy adults. Eur Respir J 1:51–57

    PubMed  CAS  Google Scholar 

  25. Magder S (2006) Central venous pressure monitoring. Curr Opin Crit Care 12:219–227

    Article  PubMed  Google Scholar 

  26. Jardin F, Genevisy B, Brun-Ney D, Bourdarais JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 86:653–658

    Google Scholar 

  27. Teboul J-L, Pinsky MR, Mercat A, Anguel N, Bernardin G, Archard J-M, Boulain T, Richard C (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636

    Article  PubMed  CAS  Google Scholar 

  28. Ridings PC, Bloomfield GL, Sugerman HJ (1995) Cardiopulmonary effects of raised intra-abdominal pressure before and after intravascular volume expansion. J Trauma 39:1071–1074

    Article  PubMed  CAS  Google Scholar 

  29. Bloomfield GL, Ridings PC, Blocher CR, Marmarou A. Sugerman HJ (1997) A proposed relationship between increased intra-abdominal, intra-thoracic and intra-cranial pressure. Crit Care Med 25:496–503

    Article  PubMed  CAS  Google Scholar 

  30. Benditt JO (2005) Esophageal and gastric pressure measurements. Respir Care 50:68–75

    PubMed  Google Scholar 

  31. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10:R102

    Article  PubMed  Google Scholar 

  32. Perel A (2006) Intrathoracic blood volume and global end-diastolic volume should be included among indexes used in intensive care for assessment of fluid responsiveness in spontaneously breathing patients. Crit Care Med 34:2266–2267

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Leatherman.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-007-0843-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, A.S., Shapiro, R.S. & Leatherman, J.W. Use of bladder pressure to correct for the effect of expiratory muscle activity on central venous pressure. Intensive Care Med 33, 1907–1912 (2007). https://doi.org/10.1007/s00134-007-0841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0841-6

Keywords

Navigation