Skip to main content
Log in

Revisionsendoprothetik der Hüfte

Bedeutung von Instabilität, Impingement, Offset und Glutealinsuffizienz

Revision total hip arthroplasty

Significance of instability, impingement, offset and gluteal insufficiency

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Instabilität ist eine häufige Versagensursache in der Primär- und Revisionsendoprothetik des Hüftgelenkes. Die Ursachen liegen u. a. in einer Implantatfehlpositionierung, einem Impingement, einer unzureichenden Offsetrekonstruktion und einer Glutealinsuffizienz. Ein Impingement nach Hüft-TEP(H-TEP)-Implantation oder -Revision kann intra- oder extraprothetisch lokalisiert sein. Es verursacht neben einer Instabilität Schmerzen im Bereich des Hüftgelenkes. Die Offsetrekonstruktion bei einer H‑TEP-Revision ist von entscheidender biomechanischer Bedeutung. Eine insuffiziente Offsetrekonstruktion verursacht ebenfalls Schmerzen und kann zu einer Luxation führen. Ein weiteres bekanntes Problem nach H‑TEP-Revision sind Läsionen und Degenerationen im Bereich der Abduktoren. Häufig resultieren diese klinisch in einer Veränderung des Gangbildes, Instabilitäten und Schmerzen.

Ziel

Das Ziel dieses Beitrags ist es, die diagnostischen und therapeutischen Algorithmen der Instabilität, des Impingements, der unzureichenden Offsetrekonstruktion und der Abduktoreninsuffizienz im Rahmen einer H‑TEP-Revision darzustellen. Hierbei liegt der Fokus auf der exakten Diagnostik der Instabilität sowie deren Ursachen und weiteren Pathologien.

Ergebnisse und Diskussion

Zur Diagnostik der H‑TEP-Instabilität und der schmerzhaften H‑TEP gehört die Anamnese, körperliche Untersuchung und vor allem die Bildgebung. Basieren auf diesen Informationen kann in fast allen Fällen die Ursache festgestellt und therapiert werden. Eine H‑TEP-Dislokation im frühen postoperativen Zeitraum kann ggf. konservativ behandelt werden. Spätluxationen erfordern häufig eine operative Therapie. Zur Vermeidung eines Impingements ist die intraoperative Kontrolle essenziell. Die Offsetrekonstruktion richtet sich, wenn möglich, nach der ursprünglichen Anatomie und kann über modulare Prothesen, Halsadapter und Kopflängen erzielt werden. Eine Glutealinsuffizienz tritt häufig nach Revisionen auf und kann bei einer ausgeprägten klinischen Beschwerdesymptomatik und fettiger Degeneration der Abduktoren operativ behandelt werden.

Abstract

Background

Instability is a common cause of failure in primary and, especially, revision total hip arthroplasty. The reasons for instability include implant malpositioning, impingement, inadequate offset reconstruction, and gluteal insufficiency. Impingement following THA and revision THA is divided into prosthetic and bony impingement, and in addition to instability also causes pain in the area of the hip joint. Offset reconstruction during revision THA is of particular biomechanical importance, since insufficient reconstruction leads not only to instability and pain but also to dislocation. Abductor deficiency often occurs after revision THA and leads to a change in gait pattern, instability and pain.

Aim

Current diagnostic and treatment procedures for instability, impingement, insufficient offset reconstruction and abductor deficiency after THA and revision THA are summarized.

Results and discussion

Diagnosis of an instable THA and painful THA includes patient history, physical examination and medical imaging. Thus, in almost all cases, the cause can be determined and treated. Dislocation after primary THA in the early postoperative period can often be treated conservatively if accurate component placement is observed, while a late-onset and recurrent dislocation after primary and revision THA usually needs surgical procedures. To avoid bony and prosthetic THA impingement intraoperative control is absolutely necessary. If possible, the offset reconstruction is based on the condition of the native hip joint and can be achieved by using modular prostheses, neck adapters and different head lengths. Abductor deficiency also occurs frequently after revision THA and can be treated surgically if severe clinical symptoms and fatty degeneration of the abductors have been diagnosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

CCD:

Centrum-Collum-Diaphyse

CT:

Computertomographie

EMG:

Elektromyographie

H-TEP:

Hüfttotalendoprothese

MRT:

Magnetresonanztomografie

PE:

Polyethylen

Literatur

  1. Ala Eddine T, Remy F, Chantelot C et al (2001) Anterior iliopsoas impingement after total hip arthroplasty: diagnosis and conservative treatment in 9 cases. Rev Chir Orthop 87:815–819

    CAS  PubMed  Google Scholar 

  2. Al-Amiry B, Mahmood S, Krupic F, Sayed-Noor A (2017) Leg lengthening and femoral-offset reduction after total hip arthroplasty: where is the problem-stem or cup positioning? Acta Radiol 58:1125–1131

    Article  PubMed  Google Scholar 

  3. Amado O, Bautista M, Moore J et al (2018) A multimodal approach prevents instability after total hip arthroplasty: a 1 year follow-up prospective study. J Clin Orthop Trauma 9:137–141

    Article  PubMed  Google Scholar 

  4. Asayama I, Chamnongkich S, Simpson KJ et al (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplast 20:414–420

    Article  Google Scholar 

  5. Batailler C, Bonin N, Wettstein M et al (2017) Outcomes of cup revision for iliopsoas impingement after total hip arthroplasty: retrospective study of 46 patients. Orthop Traumatol Surg Res 103:1147–1153

    Article  CAS  PubMed  Google Scholar 

  6. Berry DJ, Sierra RJ, Hanssen AD et al (2016) AAHKS symposium: state-of-the-Art management of tough and unsolved problems in hip and knee arthroplasty. J Arthroplasty 31:7–15

    Article  PubMed  Google Scholar 

  7. Brown TD, Elkins JM, Pedersen DR et al (2012) Impingement and dislocation in total hip arthroplasty: mechanisms ans consequences. Iowa Orthop J 34:1–15

    Google Scholar 

  8. Chalmers BP, Sculco PK, Sierra RJ et al (2017) Iliopsoas impingement after primary total hip Arthroplasty: operative and nonoperative treatment outcomes. J Bone Joint Surg Am 99:557–564

    Article  PubMed  Google Scholar 

  9. Charnley J (1979) Low friction arthroplasty of the hip. Theory and practice Bd. 137. Springer, Berlin, S 182–183

    Book  Google Scholar 

  10. Damm P, Zonneveid J, Backertz S et al (2018) Gluteal muscle damage leads to higher in vivo hip joint loads 3 months after total hip arthroplasty. PLoS ONE. https://doi.org/10.1371/journal.pone.0190626

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eschweiler J, Hawlitzky J, Quack V, Tingart M, Rath B (2017) Biomechanical model based evaluation of total hip arthroplasty therapy outcome. J Orthop 14:582–588

    Article  PubMed  PubMed Central  Google Scholar 

  12. Faldini C, Stafanini N, Fenga D et al (2018) How to prevent dislocation after revision total hip arthroplasty: a systematic review of the risk factors and a focus on treatment options. J Orthop Traumatol 19:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102:9–20

    Article  Google Scholar 

  14. Heckmann N, McKnight B, Stefl M et al (2018) Late Dislocation following total hip arthroplasty. J Bone Joint Surg Am 100:1845–1853

    Article  PubMed  Google Scholar 

  15. Innmann MM, Waier MW, Streit MR et al (2018) Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after total hip arthroplasty. J Arthroplasty 33:156–161

    Article  PubMed  Google Scholar 

  16. IQTIG (Institut für Qualitästsicherung und Transparenz im Gesundheitswesen) (2017) Bundesauswertung zum Erfassungsjahr 2017 Hüftendoprothesenversorgung

    Google Scholar 

  17. Isaacson MJ, Bunn KJ, Invaco SJ (2015) Trochanteric impingement: is it a source of pain after THR? Arthroplast Today 1:73–75

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jerosch J, Funken S (2004) Veränderung des Offsets nach Implantation von Hüftalloarthroplastiken. Unfallchirurg 107:475–482

    Article  CAS  PubMed  Google Scholar 

  19. Jerosch J, Grasselli C, Kothny PC et al (2012) Postoperative Veränderungen von Offset, CCD-Winkel und Beinlänge nach Implantation einer metadiaphysär fixierten Kurzschaftprothese – eine radiologische Untersuchung. Z Orthop Unfall 150:20–26

    Article  CAS  PubMed  Google Scholar 

  20. Jo S, Jimenez-Almonte JH, Sierra RH (2015) The cumulative risk of re-dislocation after revision THA performed for instability increases close to 35 % at 15 years. J Arthroplasty 30:1177

    Article  PubMed  Google Scholar 

  21. Joshi A, Lee CM, Markovic L et al (1998) Prognosis of dislocation after total hip arthroplasty. J Arthroplasty 13:17–21

    Article  CAS  PubMed  Google Scholar 

  22. Kim JT, Jusung L, Lee YK et al (2018) What is the tolerated width of periacetabular osteophytes to avoid impingement in cementless THA?: a three-dimensional simulation study. Arch Orthop Trauma Surg 138:1165–1172

    Article  PubMed  Google Scholar 

  23. Kovalak E, Özdemir H, Ermutlu C, Obut A (2018) Assessment of hip abductors by MRI after total hip arthroplasty and effect of fatty atrophy on functional outcome. Acta Orthop Traumatol Turc 52:196–200

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kurtz S, Ong K, Lau E et al (2007) Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res 467:2606–2012

    Article  Google Scholar 

  25. Kurtz SM, Lau E, Ong K et al (2009) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89:780–785

    Google Scholar 

  26. Lazennec JY, Clark IC, Folinais D et al (2017) What is the impact of a spinal fusion on acetabular implant orientation in functional standing and sitting positions? J Arthroplasty 32:3184–3190

    Article  PubMed  Google Scholar 

  27. Marchetti M, Krantz N, Berton C et al (2011) Component impingement in total hip arthroplasty: Frequency and risk factors. A continuous retrieval analysis series of 416 cup. Orthop Traumatol Surg Res 97:127–133

    Article  CAS  PubMed  Google Scholar 

  28. Matsushita A, Nakashima Y, Jingushi S et al (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplasty 24:646–651

    Article  PubMed  Google Scholar 

  29. Meneghini RM (2018) Investigation of the unstable total hip arthroplasty. J Arthroplasty 33:1325–1327

    Article  PubMed  Google Scholar 

  30. Migaud H, Girard J, Jobin A et al (2007) Couple de frottement métal-métal en grand diamètre au cours des arthroplasties totales de hanches: avantages et inconvénients. Rev Chir Orthop 93:310–311

    Google Scholar 

  31. Mock BK, Olsen AS, Klatt BA (2017) Abductor deficiency in total hip arthroplasty: evaluation, diagnosis, and treatment strategies. Oper Tech Orthop 27:186–191

    Article  Google Scholar 

  32. Nodzo SR, Esposito CI, Potter HG et al (2017) MRI, retrieval analysis, and Histologic evaluation of adverse local tissue reaction in metal-on-polyethylene total hip arthroplasty. J Arthroplasty 32:1647–1653

    Article  PubMed  Google Scholar 

  33. Pritchett JW (2001) Fracture of the greater trochanter after hip replacement. Clin Orthop Relat Res 390:221–226

    Article  Google Scholar 

  34. Reikerås O, Gunderson RB (2011) Components anteversion in primary cementless THA using straight stem and hemispherical cup: a prospective study in 91 hips using CT-scan measurements. Orthop Traumatol Surg Res 97:615–621

    Article  PubMed  Google Scholar 

  35. Reina N, Parrek A, Pagnano MW et al (2018) Dual-mobility constructs in primary and revision total hip arthroplasty: a systematic review of comparative studies. J Arthroplasty. https://doi.org/10.1016/j.arth.2018.11.020

    Article  PubMed  Google Scholar 

  36. Röhner E, Matziolis G (2017) Einsatz von Dual-Mobility-Pfannen beim Hüftprothesenwechsel. Orthopade 46:114–120

    Article  PubMed  Google Scholar 

  37. Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85:123–127

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schreurs BW, Hannink G (2017) Total joint arthroplasty in younger patients: heading for trouble? Lancet 389:1374–1375

    Article  PubMed  Google Scholar 

  39. Shoji T, Yasunaga Y, Yamasaki T et al (2013) Bony impingement depends on the bone morphology of the hip after total hip arthroplasty. Int Orthop 37:1897–1903

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sultan AA, Khlopas A, Piuzzi NS et al (2018) The impact of Spino-pelvic alignment on total hip arthroplasty outcomes: a critical analysis of current evidence. J Arthroplasty 33:1606–1616

    Article  PubMed  Google Scholar 

  41. Tezuka T, Heckmann ND, Bodner RJ, Dorr LD (2019) Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability. J Arthroplasty 34:1–8

    Article  Google Scholar 

  42. Walker PS, Salvati E, Hotzler RK (1974) The wear on removed McKee-Farrar total hip prostheses. J Bone Joint Surg 56:92–100

    Article  CAS  PubMed  Google Scholar 

  43. Weber M, Berry DJ (1997) Abductor avulsion after primary total hip arthroplasty. J Arthroplasty 12:202

    Article  CAS  PubMed  Google Scholar 

  44. Wera GD, Ting NT, Moric M et al (2012) Classification and management of the unstable total hip arthroplasty. J Arthroplasty 27:710–715

    Article  PubMed  Google Scholar 

  45. Whiteside LA (2014) Surgical technique—gluteus maximus and tensor fascia Lata transfer for primary deficiency of the abductors of the hip. Clin Orthop Relat Res 472:645–653

    Article  PubMed  Google Scholar 

  46. Woo RY, Morrey BF (1982) Dislocations after total hip arthroplasty. J Bone Joint Surg Am 64:1295–1306

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimoto K, Nakashima Y, Yamamoto T et al (2016) Dislocation and its recurrence after revision total hip arthroplasty. Int Orthop 40:1625–1630

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rath.

Ethics declarations

Interessenkonflikt

B. Rath, J. Eschweiler, J. Beckmann, F. Migliorini, W. Alrawashdeh und M. Tingart geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren neu durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, B., Eschweiler, J., Beckmann, J. et al. Revisionsendoprothetik der Hüfte. Orthopäde 48, 315–321 (2019). https://doi.org/10.1007/s00132-019-03704-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-019-03704-x

Schlüsselwörter

Keywords

Navigation