Skip to main content
Log in

Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Thirty-four SNPs corresponding with 22 QTLs for lint percentage, including 13 novel QTLs, was detected via GWAS. Two candidate genes underlying this trait were also identified.

Abstract

Cotton (Gossypium spp.) is an important natural textile fiber and oilseed crop cultivated worldwide. Lint percentage (LP, %) is one of the important yield components, and increasing LP is a core goal of cotton breeding improvement. However, the genetic and molecular mechanisms underlying LP in upland cotton remain unclear. Here, we performed a genome-wide association study (GWAS) for LP based on 254 upland cotton accessions in four environments as well as the best linear unbiased predictors using the high-density CottonSNP80K array. In total, 41,413 high-quality single-nucleotide polymorphisms (SNPs) were screened, and 34 SNPs within 22 quantitative trait loci (QTLs) were significantly associated with LP. In total, 175 candidate genes were identified from two major genomic loci (GR1 and GR2), and 50 hub genes were identified through GO enrichment and weighted gene co-expression network analysis. Two candidate genes (Gh_D01G0162 and Gh_D07G0463), which may participate in early fiber development to affect the number of fiber protrusions and LP, were also identified. Their genetic variation and expression were verified by linkage disequilibrium blocks, haplotypes, and quantitative real-time polymerase chain reaction, respectively. The weighted gene interaction network analysis showed that the expression of Gh_D07G0463 was significantly correlated with that of Gh_D01G0162. These identified SNPs, QTLs and candidate genes provide important insights into the genetic and molecular mechanisms underlying variations in LP and serve as a foundation for LP improvement via marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Genotyping data for 254 accessions in this study are available in the website (https://github.com/karmen-cc/TAG-2022.data). The transcriptomic data are downloaded from NCBI PRJNA546484. The python scripts for data analysis are deposited in the website (https://github.com/karmen-cc/chenchen.git).

References

  • Abdelraheem A, Fang DD, Zhang J (2018) Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of upland cotton under the greenhouse and field conditions. Euphytica. https://doi.org/10.1007/s10681-017-2095-x

    Article  Google Scholar 

  • Abdurakhmonov IY, Buriev ZT, Saha S, Pepper AE, Musaev JA, Almatov A, Shermatov SE, Kushanov FN, Mavlonov GT, Reddy UK, Yu JZ, Jenkins JN, Kohel RJ, Abdukarimov A (2007) Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. Euphytica 156:141–156

    Article  CAS  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Al E (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana in bred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bates BD, Maechler M (2007) lme4: Linear mixed-effects models using S4 classes

  • Cai C, Zhu G, Zhang T, Guo W (2017) High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genom 18(1):1–14

    Article  CAS  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob Ur R, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu G, Ma H, Song Z, Zhang C, Zhang J, Zhang J, Wang F, Zhang J (2018) Identification of introgressed alleles conferring high fiber quality derived from Gossypium barbadense L. in secondary mapping populations of G hirsutum L. Front Plant Sci 9:1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Constable G, Llewellyn D, Walford SA, Clement JD (2015) Cotton breeding for fiber quality improvement. In: Cruz VMV, Dierig DA (eds) Industrial Crops: breeding for bioenergy and bioproducts. Springer, New York, pp 191–232

    Chapter  Google Scholar 

  • Culp TW, Harrell DC (1975) Influence of lint percentage, boll size, and seed size on lint yield of upland cotton with high fiber strength. Crop Sci 15:741–746

    Article  Google Scholar 

  • Dong C, Wang J, Yu Y, Ju L, Zhou X, Ma X, Mei G, Han Z, Si Z, Li B, Chen H, Zhang T (2018) Identifying functional genes influencing Gossypium hirsutum fiber quality. Front Plant Sci 9:1968

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T (2017a) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Liu X, Wang X, Wang W, Liu D, Zhang J, Liu D, Teng Z, Tan Z, Liu F, Zhang F, Jiang M, Jia X, Zhong J, Yang J, Zhang Z (2017b) Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.). Theor Appl Genet 130:795–806

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (Version 3.2). Cladistics Int J Willi Hennig Soc 5:164–166

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell J, Mylona P, Miedema H, Torres MA (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Gapare W, Conaty W, Zhu Q-H, Liu S, Stiller W, Llewellyn D, Wilson I (2017) Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica. https://doi.org/10.1007/s10681-017-1855-y

    Article  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez OA, Robinson AF, Jenkins JN, McCarty JC, Wubben MJ, Callahan FE, Nichols RL (2011) Identification of QTL regions and SSR markers associated with resistance to reniform nematode in Gossypium barbadense L. accession GB713. Theor Appl Genet 122:271–280

    Article  PubMed  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Nie X, Shen C, You C, Li W, Zhao W, Zhang X, Lin Z (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15:1374–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu Y (2020) Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton a-genome evolution. Nat Genet 52:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL, Kochan KJ, Riggs PK, Scheffler JA, Udall JA, Ulloa M, Wang SS, Zhu QH, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore MA, Harker DB, Islam MS, Jenkins JN, Jones DC, Lacape JM, Llewellyn DJ, Percy RG, Pepper AE, Poland JA, Mohan Rai K, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zheng X, Lawley CT, Ganal MW, Van Deynze A, Wilson IW, Stelly DM (2015) Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genom Genet 5:1187–1209

    Google Scholar 

  • Illumina (2010) Genotyping Module v1.0 User Guide. An integrated platform for data visualization and analysis. Illumina, Inc Part # 11318815:168pp

  • Jeong J, Park S, Im JH, Yi H (2021) Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genom 22:22

    Article  CAS  Google Scholar 

  • Jiang H, Ma B, qian Q, Gao Z (2018) The application of genome-wide association study (GWAS) in crop agronomic traits. J Agric Biotechnol 26:1244–1257

    Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  CAS  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S (2015) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  CAS  Google Scholar 

  • Li T, Ma X, Li N, Zhou L, Liu Z, Han H, Gui Y, Bao Y, Chen J, Dai X (2017) Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J 15:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yuanzhi F, Sun R, Wang Y, Wang Q (2018) Single-locus and multi-locus genome-wide association studies in the genetic dissection of fiber quality traits in upland cotton (Gossypium hirsutum L.). Front Plant Sci. https://doi.org/10.3389/fpls.2018.01083

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Wang Y, Ai N, Li Y, Song J (2018b) A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array. J Integr Plant Biol 60:970–985

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chen L, Sun W, Wu D, Wang M, Yu Y, Chen G, Yang W, Lin Z, Zhang X, Duan L, Yang X (2020) Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J 18:2533–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Liu F, Shan X, Zhang J, Tang S, Fang X, Liu X, Wang W, Tan Z, Teng Z, Zhang Z, Liu D (2015) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 290:1683–1700

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jing L, Tu X (2016a) Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc Disord 16:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016b) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu MH, Kang H, Xu Y, Peng Y, Wang D, Gao L, Wang X, Ning Y, Wu J, Liu W, Li C, Liu B, Wang GL (2019) Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice. Plant Biotechnol J 18:1376–1383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mellor N, Band LR, Pencik A, Novak O, Rashed A, Holman T, Wilson MH, Voss U, Bishopp A, King JR, Ljung K, Bennett MJ, Owen MR (2016) Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc Natl Acad Sci 113:11022–11027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909

    Article  CAS  PubMed  Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:1–22

    Article  CAS  Google Scholar 

  • Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J (2016) Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet 129:1429–1446

    Article  PubMed  Google Scholar 

  • Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2006) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu G, Li J, Liu A, Shang H (2015) Constructing a high-density linkage map for Gossypium hirsutum × Gossypium barbadense and identifying QTLs for lint percentage. J Integr Plant Biol 57:450–467

    Article  CAS  PubMed  Google Scholar 

  • Si Z, Chen H, Zhu X, Cao Z, Zhang T (2017) Genetic dissection of lint yield and fiber quality traits of G. hirsutum in G barbadense background. Mol Breed 37(1):1–2

    Article  CAS  Google Scholar 

  • Song C, Li W, Pei X, Liu Y, Ren Z, He K, Zhang F, Sun K, Zhou X, Ma X, Yang D (2019) Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theor Appl Genet 132:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, Mao G, Wang C, Pang C, Yu S (2016) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in chinese Upland cotton. Front Plant Sci 7:1576

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z (2017) Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15:982–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L, Zhang G, Zhang C, Ma Z (2018) A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor Appl Genet 131:2413–2425

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, Wang W, Liu X, Chen C, Liu D, Teng Z, Guo K, Zhang J, Liu D, Zhang Z (2018) Genetic map construction and fiber quality QTL mapping using the CottonSNP80K array in Upland cotton. Front Plant Sci 9:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Gong Y, Zhang C, Liu G, Wang L, Xu Z, Zhang J (2011) Genetic effects of introgression genomic components from sea island cotton (Gossypium barbadense L.) on fiber related traits in upland cotton (G. hirsutum L.). Euphytica 181:41–53

    Article  Google Scholar 

  • Wang F, Xu Z, Sun R, Gong Y, Liu G, Zhang J, Wang L, Zhang C, Fan S, Zhang J (2013) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breeding 32:547–562

    Article  Google Scholar 

  • Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J (2020) Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol J 18:707–720

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Guan P, Xin M, Wang Y, Chen X, Zhao A, Liu M, Li H, Zhang M, Lu L, Zhang J, Ni Z, Yao Y, Hu Z, Peng H, Sun Q (2021) Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theor Appl Genet 134:143–157

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Tan R, Zhang S, Collins PJ, Yuan J, Du W, Gu C, Ou S, Song Q, An YC, Boyse JF, Chilvers MI, Wang D (2018) Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol J 16:1825–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Yuan Y, Zhang H, Wang L, Mao L, Tao J, Wang X, Feng W, Wang H, Wang Q, Wei Z, Zhang G, Liu X, Li Z, Song X-L, Sun X-Z (2019) Multi-environments and multi-models association mapping identified candidate genes of lint percentage and seed index in Gossypium hirsutum L. Mol Breed. https://doi.org/10.1007/s11032-019-1063-7

    Article  Google Scholar 

  • Yao L, Li Y, Ma C, Tong L, Du F, Xu M (2020) Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J Integr Plant Biol 62:1535–1551

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wang X, Wang L, Xing H, Wang Q, Saeed M, Tao J, Feng W, Zhang G, Song XL, Sun XZ (2018) Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci 9:1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H, Wang Q, Zhang G, Song X, Sun XZ (2019a) Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC Plant Biol 19:394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Zhang H, Wang L, Xing H, Mao L, Tao J, Wang X, Feng W, Wang Q, Wang H, Wei Z, Zhang G, Song X-L, Sun X-Z (2019b) Candidate quantitative trait loci and genes for fiber quality in Gossypium hirsutum L. detected using single- and multi-locus association mapping. Ind Crop Prod 134:356–369

    Article  CAS  Google Scholar 

  • Yuanzhi F, Dong C, Wang J, Wang Y, Li C (2019) Genome-wide association study reveals the genetic control underlying node of the first fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica. https://doi.org/10.1007/s10681-019-2361-1

    Article  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99

    Article  CAS  Google Scholar 

  • Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Feng L, Xing L, Yang B, Zhou B (2016) New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed 135:90–101

    Article  CAS  Google Scholar 

  • Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W (2020) Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biol 20:23. https://doi.org/10.1186/s12870-019-2187-y

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32072116, 31671742 and 31601345), Seed-Industrialized Development Program in Shandong Province (2020LZGC002), China Agriculture Research System of MOF and MARA (CARS-15-05), the Taishan Scholar Project of Shandong Province (ts201511070), State Key Laboratory of Cotton Biology (CB2019A18) and the Innovation Project in Shandong Academy of Agricultural Sciences (CXGC2016A01).

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant No. 32072116, 31671742 and 31601345), Seed-Industrialized Development Program in Shandong Province (Grant No. 2020LZGC002), China Agriculture Research System of MOF and MARA (CARS-15-05), the Taishan Scholar Project of Shandong Province (ts201511070), State Key Laboratory of Cotton Biology (Grant No. CB2019A18) and the Innovation Project in Shandong Academy of Agricultural Sciences (Grant No. CXGC2016A01).

Author information

Authors and Affiliations

Authors

Contributions

JZ and FRW designed the experiments. YC, YG, JZ, CYZ, JWG, CJZ, ZHD and SLW performed field trials, phenotypic evaluation and data collection. YC, YG, XHH, ZQS, CJZ and JXZ contributed to the preparation of cotton DNA samples. YC, PYC and CJZ analyzed the data. ZQS performed the preparation of cotton RNA samples and qRT-PCR. YC drafted the manuscript. JZ and FRW revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Furong Wang or Jun Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in the reported research.

Ethical approval

The authors note that this research is performed and reported in accordance with ethical standards of the scientific conduct.

Additional information

Communicated by Tobias Würschum.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1454 KB)

Supplementary file2 (XLSX 164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, Y., Chen, P. et al. Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theor Appl Genet 135, 2279–2295 (2022). https://doi.org/10.1007/s00122-022-04111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04111-1

Navigation