Skip to main content
Log in

Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL mapping based on backcross and RIL populations suggests that epistasis together with partial dominance, over-dominance and their environmental interactions of QTLs play an important role in yield heterosis in upland cotton.

Abstract

A backcross population (BC) was constructed to explore the genetic basis of heterosis in upland cotton (Gossypium hirsutum L.). For yield and yield components, recombinant inbred line (RIL) and BC populations were evaluated simultaneously at three different locations. A total of 35 and 30 quantitative trait loci (QTLs) were detected based on the RILs and BC data, respectively. Six (16.7 %) additive QTLs, 19 (52.8 %) partial dominant QTLs and 11 (30.6 %) over-dominant QTLs were detected by single-locus analysis using composite interval mapping in BC population. QTLs detected for mid-parent heterosis (MPH) were mostly related to those detected in the BC population. No significant correlation was found between marker heterozygosity and performance. It indicated that heterozygosity was not always favorable for performance. Two-locus analysis revealed 46, 25 and 12 QTLs with main effects (M-QTLs), and 55, 63 and 33 QTLs involved in digenic interactions (E-QTLs) were detected for yield and yield components in RIL, BC and MPH, respectively. A large number of M-QTLs and E-QTLs showed QTL by environment interactions (QEs) in three environments. These results suggest that epistasis together with partial dominance, over-dominance and QEs all contribute to yield heterosis in upland cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  CAS  PubMed  Google Scholar 

  • Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143:1437–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • East EM (1936) Heterosis. Genetics 21:375–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanopoulou-Sendouca S, Roupakias D (1999) Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk populations. Eur J Agron 11:53–62

    Article  Google Scholar 

  • Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T (2013) Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol 55:759–774

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158

    Article  PubMed  Google Scholar 

  • Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, Zeng J, He Y (2014) Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Gene 536:287–295

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    Article  CAS  PubMed  Google Scholar 

  • Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fievet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–1742

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  Google Scholar 

  • Liang Z, Lv Y, Cai C, Tong X, Chen X, Zhang W, Hao Du, Guo X, Guo W (2012) Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genom 13:539

    Article  CAS  Google Scholar 

  • Liang Q, Hu C, Hua H, Li Z, Hua J (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull 58:3233–3243

    Article  CAS  Google Scholar 

  • Liang Q, Li P, Hu C, Hua H, Li Z, Rong Y, Wang K, Hua J (2014) Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J Genet 93:63–78

    Article  CAS  PubMed  Google Scholar 

  • Liang Q, Shang L, Wang Y, Hua J (2015) Partial dominance, overdominance and epistasis as the genetic basis of heterosis in upland cotton. PLoS One 10:e0143548

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Wang B, Guo W, Qin Y, Wang L, Zhang Y, Zhang T (2012) Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed 29:297–311

    Article  CAS  Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158:1755–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Fu Y, Zhang P, Wu S, Tian F, Liu J, Zhu Z, Yang J, Sun C (2009) Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. J Integr Plant Biol 51:393–408

    Article  PubMed  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–131

    Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  CAS  PubMed  Google Scholar 

  • Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet 110:649–659

    Article  CAS  PubMed  Google Scholar 

  • Meredith WR, Bridge RR (1972) Heterosis and gene action in cotton, Gossypium hirsutum L. Crop Sci 12:304–310

    Article  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richey FD (1942) Mock-dominance and hybrid vigor. Science 96:280–281

    Article  CAS  PubMed  Google Scholar 

  • Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang JF (2014) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1003–1025

    Article  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang JF (2015) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1615–1625

    Article  CAS  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang L, Liu F, Wang Y, Abduweli A, Cai S, Wang K, Hua J (2015a) Dynamic QTL mapping for plant height in upland cotton (Gossypium hirsutum). Plant Breed 134:703–712

    Article  CAS  Google Scholar 

  • Shang L, Liang Q, Wang Y, Wang X, Wang K, Abduweli A, Ma L, Cai S, Hua J (2015b) Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in upland cotton (Gossypium hirsutum L.). Euphytica 205:877–888

    Article  CAS  Google Scholar 

  • Shang L, Cai S, Ma L, Wang Y, Abduweli A, Wang M, Wang X, Liang Q, Hua J (2016) Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in upland cotton. Euphytica 207:645–663

    Article  CAS  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. J Hered 4:296–301

    Article  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic-factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Zhang J, Wang S, Gong W, Shi Y, Liu A, Li J, Gong J, Shang H, Yuan Y (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582

    Article  Google Scholar 

  • Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326:1118–1120

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340

    Article  PubMed  Google Scholar 

  • Tang S, Teng Z, Zhai T, Fang X, Liu F, Liu D, Zhang J, Liu D, Wang S, Zhang K, Shao Q, Tan Z, Paterson AH, Zhang Z (2015) Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang S, Basten C, Zeng Z (2005) Windows QTL cartographer 2.5. North Carolina State University, Raleigh

    Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature 184:527–530

    Article  CAS  PubMed  Google Scholar 

  • Xiao JH, Li JM, Yuan LP, Tanksley SD (1995) Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang Q, Saghai Maroof M (1997) Importance of epitasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed 29:335–348

    Article  Google Scholar 

  • Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q (2012) Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109:15847–15852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhengsheng Zhang (Southwest University) and Dr. Youlu Yuan (Institute of Cotton Research, Chinese Academy of Agricultural Sciences) for providing SWU SSR primers. Thanks to Xianhui Yan and Yihua Rong (Xiangyang Academy of Agricultural Sciences, Hubei) and Shihu Cai, Abdugheni Abduweli, Xiaocui Wang, Yuhua Li (China Agricultural University) for the contributions on field investigations and data acquisition. Thanks to Babar Ijaz (China Agricultural University) for the contribution on manuscript polishing. This research was supported by a grant from the National Natural Science Foundation of China (31171591), and a grant from the National High Technology Research and Development Program (2011AA10A102) to J HUA.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Hua.

Additional information

Communicated by A. Charcosset.

L. Shang and Q. Liang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Liang, Q., Wang, Y. et al. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet 129, 1429–1446 (2016). https://doi.org/10.1007/s00122-016-2714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2714-2

Keywords

Navigation