Skip to main content
Log in

Identification of consistent QTL with large effect on anther extrusion in doubled haploid populations developed from spring wheat accessions in German Federal ex situ Genebank

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel large-effect consistent QTL for anther extrusion (AE) to improve cross-pollination were mapped in doubled haploid populations derived from IPK gene bank spring wheat accessions. TaAP2-D, an ortholog of Cleistogamy1 in barley, is a likely candidate gene for AE in wheat.

Abstract

To establish a robust hybrid wheat breeding system, male lines harboring alleles that promote outcrossing should be developed. In this study, we developed two doubled haploid (DH) populations of hexaploid spring wheat (Triticum aestivum L.) by crossing accessions taken from IPK gene bank. In both populations, the phenotypic data of anther extrusion (AE) based on three years of field trials showed a wide variation and approximated a normal distribution. Both populations were genotyped with a 15 k Infinium single nucleotide polymorphism (SNP) array resulting in 3567 and 3457 polymorphic SNP markers for DH population-1 and DH population-2, respectively. Composite interval mapping identified quantitative trait loci (QTL) on chromosomes 1D, 2D, 4A, 4B, 5A, 5D, 6A, and 6B; with consistent QTL (that are identified in all the years) on chromosome 4A in DH population-1, and on chromosomes 2D and 6B in DH population-2. The consistent QTL explained 17.2%, 32.9%, and 12.3% of the phenotypic variances, respectively. Genic scan of the chromosome 2D-QTL showed that the wheat gene TaAP2-D, an ortholog of Cleistogamy1 which promotes AE via swelling of the lodicules in barley, lies within the QTL region. A diagnostic marker was developed for TaAP2-D that showed co-segregation with the AE phenotype. This study shows the use of gene bank diversity reservoir to find alleles which are otherwise difficult to detect in elite populations. The identification of large-effect consistent QTL for AE is expected to help form efficient male parental lines suitable for hybrid wheat seed production and serve as a source for map-based cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TB, Qualset CO, Cox DF (1980) Predicting heterosis in wheat. Crop Sci 20:339–342

    Article  Google Scholar 

  • Barbosa-Neto JF, Sorrells ME, Cisar G (1996) Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Beri S, Anand S (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury

    Google Scholar 

  • Boeven PH, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T (2016) Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129:2343–2357

    Article  PubMed  Google Scholar 

  • Bruns R, Peterson CJ (1998) Yield and stability factors associated with hybrid wheat. Euphytica 100:1–5

    Article  Google Scholar 

  • Buerstmayr M, Buerstmayr H (2015) Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theor Appl Genet 128:1519–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium IWGS (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  CAS  Google Scholar 

  • Dafni A, Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol 222:113–132

    Article  Google Scholar 

  • De Vries AP (1971) Flowering biology of wheat, particularly in view of hybrid seed production - a review. Euphytica 20:152–170

    Article  Google Scholar 

  • De Vries AP (1972) Some aspects of cross-pollination in wheat (Triticum aestivum L.) 1. Pollen concentration in the field as influenced by variety, diurnal pattern, weather conditions and level as compared to the height of the pollen donor. Euphytica 21:185–203

    Article  Google Scholar 

  • De Vries AP (1973) Some aspects of cross-pollination in wheat (Triticum aestivum L.) 2. Anther extrusion and ear and plant flowering pattern and duration. Euphytica 22:445–456

    Article  Google Scholar 

  • De Vries AP (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.). 4. Seed set on male sterile plants as influenced by distance from the pollen source, pollinator: male sterile ratio and width of the male sterile strip. Euphytica 23:601–622

    Article  Google Scholar 

  • D’Souza L (1970) Studies on the suitability of wheat as pollen donor for cross pollination, compared with rye, Triticale and Secalotricum. Zeitschrift fur Pflanzenzüchtung 63:246–269

    Google Scholar 

  • Graham S, Browne RA (2009) Anther extrusion and Fusarium head blight resistance in European wheat. J Phytopathol 157:580–582

    Article  Google Scholar 

  • He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E (2016) Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS ONE 11:e0162499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49:1741

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koekemoer FP, Van Eeden E, Bonjean AP (2011) An overview of hybrid wheat production in South Africa and review of current worldwide wheat hybrid developments. World Wheat Book A Hist Wheat Breed 2:907–950

    Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed 133:433–441

    Article  Google Scholar 

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord EM (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449

    Article  Google Scholar 

  • Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, Dong YH, Bjørnstad Å (2013) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Mühleisen J, Piepho HP, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Muqaddasi QH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS (2016) Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PLoS ONE 11:e0155494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muqaddasi QH, Brassac J, Börner A, Pillen K, Röder MS (2017a) Genetic architecture of anther extrusion in spring and winter wheat. Front Plant Sci 8:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Muqaddasi QH, Pillen K, Plieske J, Ganal MW, Röder MS (2017b) Genetic and physical mapping of anther extrusion in elite European winter wheat. PLoS ONE 12:e0187744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muqaddasi QH, Reif JC, Li Z, Basnet BR, Dreisigacker S, Röder MS (2017c) Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat. Euphytica 213:73

    Article  CAS  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  PubMed  Google Scholar 

  • Nettevich ED (1968) The problem of utilizing heterosis of wheat (Triticum aestivum). Euphytica 17:54–62

    Google Scholar 

  • Ning S, Wang N, Sakuma S, Pourkheirandish M, Koba T, Komatsuda T (2013a) Variation in the wheat AP2 homoeologs, the genes underlying lodicule development. Breed Sci 63:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning S, Wang N, Sakuma S, Pourkheirandish M, Wu J, Matsumoto T, Koba T, Komatsuda T (2013b) Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. Theor Appl Genet 126:1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci 94:7076–7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett AA (1993) Hybrid wheat—results and problems. Fortschritte der Pflanzenzüchtung. Paul Parey Scientific Publishers, Berlin

    Google Scholar 

  • Pickett AA, Galwey NW (1997) A further evaluation of hybrid wheat. Plant Var Seeds 10:15–32

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Shull GH (1948) What is” heterosis”? Genetics 33:439–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Arun B, Joshi AK (2007) Comparative evaluation of exotic and adapted germplasm of spring wheat for floral characteristics in the Indo-Gangetic Plains of northern India. Plant Breed 126:559–564

    Article  Google Scholar 

  • Singh S, Chatrath R, Mishra B (2010) Perspective of hybrid wheat research: a review. Indian J Agric Sci 80:1013–1027

    Google Scholar 

  • Skinnes H, Semagn K, Tarkegne Y, Maroy AG, Bjørnstad Å (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129:149–155

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Uphof JCT (1938) Cleistogamic Flowers. Bot Rev 4:21–49

    Article  Google Scholar 

  • Van Ooijen J (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, p 33

    Google Scholar 

  • Walton PD (1971) Heterosis in spring wheat. Crop Sci 11:422–424

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. https://brcwebportal.cos.ncsu.edu/qtlcart/

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JA (1968) Problems in hybrid wheat breeding. Euphytica 17:13

    Google Scholar 

  • Wilson J, Ross W (1962) Cross breeding in wheat, Triticum aestivum L. II. Hybrid seed set on a cytoplasmic male-sterile winter wheat composite subjected to cross-pollination. Crop Sci 2:415–417

    Article  Google Scholar 

  • Zhang X, Xiao Y, Zhang Y, Xia X, Dubcovsky J, He Z (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhou Y, Lu D, Li C, Luo J, Zhu B-F, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Grant4Traits, a project by Bayer AG, Division Crop Science. We are grateful to Ellen Weiß, Anette Heber, Ute Ostermann, and Sonja Allner for help in data collection. We thank Ravi Koppolu and Martin Mascher for helpful discussions. The authors gratefully acknowledge the handling editor and three anonymous reviewers whose comments helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quddoos H. Muqaddasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

On behalf of all co-authors, the corresponding author states that the work described is original, previously unpublished research. All the authors listed have approved the manuscript.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 488 kb)

Supplementary material 2 (XLSX 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muqaddasi, Q.H., Jayakodi, M., Börner, A. et al. Identification of consistent QTL with large effect on anther extrusion in doubled haploid populations developed from spring wheat accessions in German Federal ex situ Genebank. Theor Appl Genet 132, 3035–3045 (2019). https://doi.org/10.1007/s00122-019-03404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03404-2

Navigation