Skip to main content
Log in

Dynamic QTL and epistasis analysis on seedling root traits in upland cotton

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Roots are involved in acquisition of water and nutrients, as well as in providing structural support to plant. The root system provides a dynamic model for developmental analysis. Here, we investigated quantitative trait loci (QTL), dynamic conditional QTL and epistatic interactions for seedling root traits using an upland cotton F2 population and a constructed genetic map. Totally, 37 QTLs for root traits, 35 dynamic conditional QTLs based on the net increased amount of root traits (root tips, forks, length, surface area and volume) (i) after transplanting 10 days compared to 5 days, and (ii) after transplanting 15 days to 10 days were detected. Obvious dynamic characteristic of QTL and dynamic conditional QTL existed at different developmental stages of root because QTL and dynamic conditional QTL had not been detected simultaneously. We further confirmed that additive and dominance effects of QTL qRSA-chr1-1 in interval time 5 to 10 DAT (days after transplant) offset the effects in 10 to 15 DAT. Lots of two-locus interactions for root traits were identified unconditionally or dynamically, and a few epistatic interactions were only detected simultaneously in interval time of 5–10 DAT and 10–15 DAT, suggesting different interactive genetic mechanisms on root development at different stages. Dynamic conditional QTL and epistasis effects provide new attempts to understand the dynamics of roots and provide clues for root architecture selection in upland cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3.

Similar content being viewed by others

References

  • Abdel-Haleem H., Lee G. J. and Boerma R. H. 2011 Identification of QTL for increased fibrous roots in soybean. Theor. Appl. Genet. 122, 935–946.

  • Atchley W. R. and Zhu J. 1997 Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147, 65–776.

  • Blenda A., Fang D., Rami J., Garsmeur O., Luo F. and Lacape J. M. 2012 High density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7, e45739.

  • Chen X., Guo W., Liu B., Zhang Y., Song X., Cheng Y. et al. 2012 Molecular mechanisms of fibre differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS One 7, e30056.

  • He C. X., Jun Z., Yan J. Q., Benmoussa M. and Ping W. 2000 QTL mapping for developmental behaviour of panicle dry weight in rice. Sci. Agric. Sin. 33, 24–32.

  • Hoagland D. R. and Arnon D. I. 1950 The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular no. 347. College of Agriculture, University of California, Berkeley, USA.

  • Hochholdinger F. and Tuberosa R. 2009 Genetic and genomic dissection of maize root development and architecture. Curr. Opin. Plant Biol. 12, 172–177.

  • Hua J., Xing Y., Xu C., Sun X., Yu S. and Zhang Q. 2002 Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885–1895.

  • Hua J., Xing Y., Wu W., Xu C., Sun X., Yu S. and Zhang Q. 2003 Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 100, 2574–2579.

  • Klueva N. Y., Joshi R. C., Joshi C. P., Wester D. B., Zartman R. E., Cantrell R. G. and Nguyen H. T. 2000 Genetic variability and molecular responses of root penetration in Cotton. Plant Sci. 155, 41–47.

  • Lander L. E. and Kruglyak L. 1995 Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. and Newburg L 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

  • Landi P., Giuliani S., Salvi S., Ferri M., Tuberosa R. and Sanguineti M. C. 2010 Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J. Exp. Bot. 61, 3553–3562.

  • Liang Q. Z., Hua H., Hu C., Li Z. H. and Hua J. P. 2013 QTL mapping for fiber quality traits and construction of a linkage map in upland cotton (Gossypium hirsutum L.) Chin. Sci. Bull. 58, 3233–3243.

  • Li W. H., You M. S. and Liu W. 2006 QTL mapping for developmental behavior of GMP content in wheat. Acta Agron. Sin. 32, 995–1000 (in Chinese with English abstract).

  • Mei M., Syed N., GaoW., Thaxton P., Smith C., Stelly D. and Chen Z. 2004 Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor. Appl. Genet. 108, 280–291.

  • Obara M., Tamura W., Ebitani T., Yano M., Sato T. and Yamaya T. 2010 Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH\(_{4}^{+}\) concentrations in hydroponic conditions. Theor. Appl. Genet. 121, 535–547.

  • Paterson A. H., Brubaker C. L. and Wendel J. F. 1993 A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant. Mol. Biol. Rep. 11, 122–127.

  • Price A. and Tomos A. 1997 Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theor. Appl. Genet. 95, 143–152.

  • Price A., Tomos A. and Virk D. 1997 Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydrophonic screen. Theor. Appl. Genet. 95, 132–142.

  • Qin H. D., Guo W. Z., Zhang Y. M. and Zhang T. Z. 2008 QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 117, 883– 894.

  • Qu Y. Y., Mu P., Zhang H. L., Chen C. Y., Gao Y. M., Tian Y. et al. 2008 Mapping QTL of root morphological traits at different growth stages in rice. Genetica 133, 187–200.

  • Ruta N., Liedgens M., Fracheboud Y., Stamp P. and Hund A. 2010 QTL for the elongation of axile and lateral roots of maize in response to low water potential. Theor. Appl. Genet. 120, 621–631.

  • Sharma S., Xu S. Z., Ehdaie B., Hoops A., Close T. J., Lukaszewski A. J. and Waines J. G. 2011 Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor. Appl. Genet. 122, 759–769.

  • Song X. L. and Zhang T. Z. 2009 Quantitative trait loci controlling plant architectural traits in cotton. Plant. Sci. 177, 317– 323.

  • Steele K. A., Price A. H., Witcombe J. R., Shrestha R., Singh B. N., Gibbons J. M. and Virk D. S. 2012 QTL associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor. Appl. Genet 126, 101–108.

  • Tang J.,Yan J., Ma X., Teng W.,Wu W., Dai J. et al. 2010 Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor. Appl. Genet. 120, 333–340.

  • Uga Y., Okuno K. and Yano M. 2011 Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 62, 2485–2494.

  • Voorrips R. 2002 MapChart: software for the graphical presentation of linkage maps and QTL. J. Hered. 93, 77–78.

  • Wang K., Wang Z., Li F., Ye W., Wang J., Song G. et al. 2012 The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44, 1098–1103.

  • Wang S., Basten C. and Zeng Z. 2005 Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

  • Wu W. R., Li W. M., Tang D. Z., Lu H. R. and Worland A. 1999 Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151, 297–303.

  • Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. 1998a Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.) Genetics 150, 1257–1265.

  • Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. 1998b Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.) Theor. Appl. Genet. 97, 267–274.

  • Yan J. B., Tang H., Huang Y. Q., Shi Y. G., Li J. S. and Zheng Y. L. 2003 Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin. Sci. Bull. 48, 2601–2607.

  • Yu S., Li J., Xu C., Tan Y., Ga Y. and Zhang Q. 1997 Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 94, 9226–9231.

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

  • Zhang K., Zhang J., Ma S., Tang S. and Li D. 2012 Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.) Mol. Breed. 29, 335–348.

  • Zhang Z. S., Hu M. C., Zhang J., Liu D. J., Zheng J., Zhang K. et al. 2009 Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) Mol. Breed 24, 49–61.

  • Zhou G., Chen Y., Yao W., Zhang C., Xie W., Hua J. et al. 2012 Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 109, 15847–15852.

  • Zhu J. 1995 Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141, 1633–1639.

Download references

Acknowledgments

This research was supported by a grant from the National High Technology Research and Development Programme (2011AA10A102) and a grant from the New Century Excellent Talents of the Ministry of Education (NCET-06-0106) to J. Hua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JINPING HUA.

Additional information

[Liang Q., Li P., Hu C., Hua H., Li Z., Rong Y., Wang K. and Hua J. 2014 Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J. Genet. 93, xx–xx]

Jinping Hua and Qingzhi Liang conceived and designed the experiments. Qingzhi Liang performed the experiments. Qingzhi Liang, Pengbo Li and Cheng Hu analysed the data. Qingzhi Liang and Hua Hua screened polymorphic primers. Jinping Hua and Zhaohu Li contributed reagents, materials and analysis tools. Qingzhi Liang and Jinping Hua wrote the paper. All the authors discussed the results and commented on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIANG, Q., LI, P., HU, C. et al. Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J Genet 93, 63–78 (2014). https://doi.org/10.1007/s12041-014-0341-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0341-8

Keywords

Navigation