Skip to main content
Log in

Validation Assay of p3_VvAGL11 Marker in a Wide Range of Genetic Background for Early Selection of Stenospermocarpy in Vitis vinifera L.

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

DNA markers technology, derived from research in molecular biology and genomics, offers great promise for plant breeding, allowing the “molecular breeding” via marker-assisted selection. Grapevine genomic resources allowed, in recent years, the characterization at molecular level of genes involved in interesting phenotypes such as stenospermocarpic seedlessness, a trait really appreciated by consumers. Recent studies in table grapes revealed that the VvAGL11 gene, member of the D-lineage MADS-box family, controls the ovule identity, and thus potentially playing an important role in stenospermocarpy. Intragenic markers of VvAGL11 have been found and tested for breeding purposes. In the present paper, we describe an in deep assay on a total of 475 genotypes derived by our own grape germplasm and seeded × seedless crosses F1 offspring, to evaluate and verify the “diagnostic” power of VvAGL11 in marker-assisted selection. We found only 8/475 that were seeded and carried the seedless-associated allele in the STS p3_VvAGL11. However, and most importantly, there were no seedless varieties without such allele. We validated the marker as a 100 % effective tool for early negative selection of stenospermocarpy in Vitis vinifera L. crosses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mejía, N., Soto, B., Guerrero, M., Casanueva, X., Houel, C., Miccono, M. E. L., et al. (2011). Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology, 11, 57.

    Article  Google Scholar 

  2. Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., & Grando, M. S. (2008). Berry and phenology-related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to underlying genes. BMC Plant Biology, 8, 38.

    Article  Google Scholar 

  3. Moroldo, M., Paillard, S., Marconi, R., Fabrice, L., Canaguier, A., Cruaud, C., et al. (2008). A physical map of the heterozygous grapevine ‘Cabernet Sauvignon’ allows mapping candidate genes for disease resistance. BMC Plant Biology, 8, 66.

    Article  Google Scholar 

  4. Carmona, M. J., Chaïb, J., Martínez-Zapater, J. M., & Thomas, M. R. (2008). A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany, 59, 2579–2596.

    Article  CAS  Google Scholar 

  5. Emanuelli, F., Battilana, J., Costantini, L., Le Cunff, L., Boursiquot, J. M., This, P., et al. (2010). A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biology, 10, 241.

    Article  Google Scholar 

  6. Battilana, J., Emanuelli, F., Gambino, G., Gribaudo, I., Gasperi, F., Boss, P. K., et al. (2011). Functional effect of grapevine 1-deoxy-d-xylulose 5-phosphate synthase substitution K284 N on Muscat flavour formation. Journal of Experimental Botany, 62, 5497–5508.

    Article  CAS  Google Scholar 

  7. Akkurt, M., Cakır, A., Shidfar, M., Celikkol, B. P., & Söylemezoğlu, G. (2012). Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genetics and Molecular Research, 11, 2288–2294.

    Article  CAS  Google Scholar 

  8. Karaagac, E., Vargas, A., Andrés, M., Carreño, I., Ibáñez, J., Carreño, J., et al. (2012). Marker assisted selection for seedlessness in table grape breeding. Tree Genetics and Genomes, 8, 1003–1015.

    Article  Google Scholar 

  9. Fatahi, R., Zamani, Z., Ebadi, A., & Mehlenbacher, S. A. (2004). The inheritance of seedless Scc8-scar and Ssrs loci alleles in progeny of ‘Muscat hamburg’ × ’bidane quermez’ grapes. Ishs Acta Horticulturae, 652, 329–335.

    CAS  Google Scholar 

  10. Adam-blondon, A., Lahogue-esnault, F., Bouquet, A., & Boursiquot, J. (2001). Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis, 40, 147–155.

    CAS  Google Scholar 

  11. Cabezas, J. A., Cervera, M. T., Ruiz-García, L., Carreño, J., & Martínez-Zapater, J. M. (2006). A genetic analysis of seed and berry weight in grapevine. Genome, 49, 1572–1585.

    Article  CAS  Google Scholar 

  12. Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363, 557–572.

    Article  CAS  Google Scholar 

  13. Migliaro, D., Santellani, F., Da Rold, G., Velasco R., Vezzulli, S., & Crespan M. (2012). Experimental assessment of molecular markers efficiency (VvAGL11) in MAS for table grape breeding. XXXV Word Congress of the Vine and Wine (June 2012, Izmir, Turkey).

  14. Fanizza, G., Lamaj, F., Costantini, L., Chaabane, R., & Grando, M. S. (2005). QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theoretical and Applied Genetics, 111, 658–664.

    Article  CAS  Google Scholar 

  15. Le Cunff, L., Fournier-Level, A., Laucou, V., Vezzulli, S., Lacombe, T., Adam-Blondon, A. F., et al. (2008). Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biology, 8, 31.

    Article  Google Scholar 

  16. Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J. P., Dessup, M., et al. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122, 1233–1245.

    Article  CAS  Google Scholar 

  17. Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86, 985–990.

    CAS  Google Scholar 

  18. Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39, 628–633.

    Article  CAS  Google Scholar 

  19. Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture, 50, 243–246.

    CAS  Google Scholar 

  20. Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42, 367–373.

    CAS  Google Scholar 

  21. Pellerone, F., Edwards, K., & Thomas, M. (2001). Grapevine microsatelliterepeats: isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis, 40, 179–186.

    CAS  Google Scholar 

  22. Wagner, H. W., & Sefc, K. M. (1999). IDENTITY 1.0. Centre for applied genetics. Vienna: University of Agricultural Sciences.

    Google Scholar 

  23. Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.

    CAS  Google Scholar 

  24. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  Google Scholar 

  25. Landridge, P. & Chalmers, K. J. (2005). The principle: Identification and application of molecular markers. Biotechnology in agriculture and forestry (pp. 3–22). Heidelberg: Springer-Verlag.

Download references

Acknowledgments

This study was supported by Grant from Apulia Region (PO FESR-FSE 2007-20013-Project TEGUVA cod.61/09), the Italian Ministry of University and Research-MIUR (PON “R&C”-2007-2013-Project ONEV- cod.00134/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Antonacci.

Additional information

Carlo Bergamini, Maria Francesca Cardone authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamini, C., Cardone, M.F., Anaclerio, A. et al. Validation Assay of p3_VvAGL11 Marker in a Wide Range of Genetic Background for Early Selection of Stenospermocarpy in Vitis vinifera L.. Mol Biotechnol 54, 1021–1030 (2013). https://doi.org/10.1007/s12033-013-9654-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9654-8

Keywords

Navigation