Skip to main content
Log in

Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Non-preferential chromosome pairing was identified in tetraploid Actinidia chinensis and a higher mean multivalent frequency in pollen mother cells was found in colchine-induced tetraploids of A. chinensis compared with naturally occurring tetraploids.

Abstract

Diploid and tetraploid Actinidia chinensis are used for the development of kiwifruit cultivars. Diploid germplasm can be exploited in a tetraploid breeding programme via unreduced (2n) gametes and chemical-induced chromosome doubling of diploid cultivars and selections. Meiotic chromosome behaviour in diploid A. chinensis ‘Hort16A’ and colchicine-induced tetraploids from ‘Hort16A’ was analysed and compared with that in a diploid male and tetraploid males of A. chinensis raised from seeds sourced from the wild in China. Both naturally occurring and induced tetraploids formed multivalents, but colchicine-induced tetraploids showed a higher mean multivalent frequency in the pollen mother cells. Lagging chromosomes at anaphase I and II were observed at low frequencies in the colchicine-induced tetraploids. To investigate whether preferential or non-preferential chromosome pairing occurs in tetraploid A. chinensis, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of crosses between A. chinensis (4x) and A. arguta (4x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the tetraploid A. chinensis parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Avivi L (1976) The effect of genes controlling different degrees of homoeologous pairing on quadrivalent frequency in induced autotetraploid lines of Triticum longissimum. Can J Genet Cytol 18:357–364

    Google Scholar 

  • Corredor E, Díez M, Shepherd K, Naranjo T (2005) The positioning of rye homologous chromosomes added to wheat through the cell cycle in somatic cells untreated and treated with colchicine. Cytogenet genome Res 109:112–119

    Article  CAS  PubMed  Google Scholar 

  • Crawford DJ, Smith FB (1984) Allozyme divergence and intraspecific variation in Coreopsis grandiflora (Compositae). Syst Bot 9:219–225

    Article  Google Scholar 

  • Curole JP, Hedgecock D (2005) Estimation of preferential pairing rates in second-generation autotetraploid pacific oysters (Crassostrea gigas). Genetics 171:855–859

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AR (1984) Kiwifruit: a botanical review. Hort Rev 6:1–64

    Google Scholar 

  • Fjellstrom RG, Beuselinck PR, Steiner JJ (2001) RFLP marker analysis supports tetrasomic inheritance in Lotus corniculatus L. Theor Appl Genet 102:718–725

    Article  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993) Fine physical mapping of ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    CAS  PubMed  Google Scholar 

  • Gonzalez MV, Coque M, Herrero M (1998) Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann Appl Bio 132:349–355

    Article  Google Scholar 

  • Goodwin RM, McBrydie HM, Taylor MA (2013) Wind and honey bee pollination of kiwifruit (Actinidia chinensis ‘Hort16A’). N Z J Bot 51:229–240

    Article  Google Scholar 

  • Hopping ME, Hacking NJA (1983) A comparison of pollen application methods for the artificial pollination of kiwifruit. Acta Hort 139:41–45

    Google Scholar 

  • Jackson RC (1982) Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. Amer J Bot 69:1512–1523

    Article  Google Scholar 

  • Jones GH (1994) Meiosis in autotetraploid Crepis capillaris. III. Comparison of triploids and tetraploids; evidence for non independence of autonomous pairing sites. Heredity 73:215–219

    Article  Google Scholar 

  • Katsiotis A, Forsberg RA (1995) Production and cytogenetics of tetraploid–octoploid Avena hybrids. Plant Breed 114:137–143

    Article  Google Scholar 

  • Li DW, Liu YF, Zhong CH, Huang HW (2010) Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. Bot J Linnean Soc 164:72–83

    Article  Google Scholar 

  • Luan L, Wang X, Long WB, Liu YH, Tu SB, Xiao XY, Kong FL (2009) A comparative cytogenetic study of the rice (Oryza sativa L.) autotetraploid restorers and hybrids. Russian J Genet 45:1074–1081

    Article  CAS  Google Scholar 

  • McNeilage MA, Considine JA (1989) Chromosome studies in some Actinidia taxa and implications for breeding. N Z J Bot 27:71–78

    Article  Google Scholar 

  • Mertten D, Tsang GK, Manako KI, McNeilage MA, Datson PM (2012) Meiotic chromosome pairing in Actinidia chinensis var. deliciosa. Genetica 140:455–462

    Article  CAS  PubMed  Google Scholar 

  • Naranjo T, Orellana J (1984) Meiotic behaviour of chromosomes 1R, 2R and 5R in autotetraploid rye. Chromosoma 89:143–150

    Article  Google Scholar 

  • Nardozza S, Boldingh HL, Richardson AC, Costa G, Marsh H, MacRae EA, Clearwater MJ (2010) Variation in carbon content and size in developing fruit of Actinidia deliciosa genotypes. Func Plant Biol 37:545–554

    Article  CAS  Google Scholar 

  • Noda S (1968) Achiasmate bivalent formation by parallel pairing in PMCs of Fritillaria amabilis. Bot Mag Tokyo 81:344–345

    Google Scholar 

  • Qu L, Hancock JF, Whallon JH (1998) Evolution in an autotetraploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae). Amer J Bot 85:698–703

    Article  CAS  Google Scholar 

  • Rees H, Jones RN (1977) Chromosome genetics. Arnold, London

    Google Scholar 

  • Samuel R, Pinsker W, Ehrendorfer F (1990) Allozyme polymorphism in diploid and polyploid populations of Galium. Heredity 65:369–378

    Article  Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    CAS  PubMed  Google Scholar 

  • Seal AG, Ferguson AR, Silva HN, Zhang J-L (2012) The effect of 2n gametes on sex ratios in Actinidia. Sex Plant Reprod 25:197–203

    Article  PubMed  Google Scholar 

  • Seal AG, Dunn JK, Jia YL (2013) Pollen parent effects on fruit attributes of diploid Actinidia chinensis ‘Hort16A’ kiwifruit. N Z J Crop Hort Sci. doi:10.1080/01140671.2013.803130

  • Soltis DE, Riesberg LH (1986) Autopolyploidy in Tolmeiea menziesii (Saxifragaceae): genetic insight from enzyme electrophoresis. Amer J Bot 73:310–318

    Article  CAS  Google Scholar 

  • Sybenga J (1988) Mathematical models for estimating preferential pairing and recombination in triploid hybrids. Genome 30:745–755

    Article  Google Scholar 

  • Sybenga J (1994) Preferential pairing estimates from multivalent frequencies in tetraploids. Genome 37:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Wu J-H (2012) Manipulation of ploidy for kiwifruit breeding and the study of Actinidia genomics. Acta Hort 961:539–546

    Google Scholar 

  • Wu J-H, Mooney P (2002) Autotetraploid tangor plant regeneration from in vitro Citrus somatic embryogenic callus treated with colchicine. Plant Cell Tiss Organ Cult 70:99–104

    Article  CAS  Google Scholar 

  • Wu J-H, Ferguson AR, Murray BG (2009) In vitro induction of autotetraploid Actinidia plants and their field evaluation for crop improvement. Acta Hort 829:245–250

    CAS  Google Scholar 

  • Wu J-H, Ferguson AR, Murray BG (2011) Manipulation of ploidy for kiwifruit breeding: in vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell Tiss Organ Cult 106:503–511

    Article  CAS  Google Scholar 

  • Wu J-H, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169–179

    Article  PubMed  Google Scholar 

  • Wu J-H, Ferguson AR, Murray BG, Duffy AM, Jia Y, Cheng C, Martin PJ (2013) Fruit quality in induced polyploids of Actinidia chinensis. HortScience 48:701–707

    Google Scholar 

  • Wu R, Gallo-Meagher M, Littell RC, Zeng Z-B (2001) A general polyploidy model for analyzing gene segregation in outcrossing tetraploid species. Genetics 159:869–882

    CAS  PubMed  Google Scholar 

  • Xiong Z-T, Huang R-H (1988) Chromosome numbers of 10 species and 3 varieties in Actinidia Lindl. Acta Phytotaxon Sin 26:245–247

    Google Scholar 

  • Yan G, Ferguson AR, McNeilage MA, Murray BG (1997) Numerically unreduced (2n) gametes and sexual polyploidization in Actinidia. Euphytica 96:267–272

    Article  Google Scholar 

  • Zhang Z-Y (1983) A report on the chromosome numbers of 2 varieties of Actinidia chinensis Planch. Acta Phytotaxon Sin 21:161–163

    Google Scholar 

Download references

Acknowledgments

We thank A. R. Ferguson, A. G. Seal, H. N. de Silva, and F. A. Gunson for helpful comments on the manuscript, and D. Gibson for photographic design.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments complied with current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Hu Wu or Paul M. Datson.

Additional information

Communicated by B. Friebe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (DOCX 76 kb)

Supplementary Table 1 Microsatellite primers used in the Actinidia study.

Supplementary Table 2 Multinomial likelihood tests and Pearson’s Chi-squared tests of goodness of fit of observed microsatellite allelic combinations in the hybrid progeny of Actinidia chinensis (4x) x A. arguta (4x) to expected non-preferential pairing, and preferential pairing segregation ratios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JH., Datson, P.M., Manako, K.I. et al. Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis . Theor Appl Genet 127, 549–557 (2014). https://doi.org/10.1007/s00122-013-2238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2238-y

Keywords

Navigation