Skip to main content
Log in

Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sorghum, a cereal of economic importance ensures food and fodder security for millions of rural families in the semi-arid tropics. The objective of the present study was to identify and validate quantitative trait loci (QTL) for grain yield and other agronomic traits using replicated phenotypic data sets from three post-rainy dry sorghum crop seasons involving a mapping population with 245 F9 recombinant inbred lines derived from a cross of M35-1 × B35. A genetic linkage map was constructed with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers. The QTL analysis for 11 traits following composite interval mapping identified 91 QTL with 5–12 QTL for each trait. QTL detected in the population individually explained phenotypic variation between 2.5 and 30.3 % for a given trait and six major genomic regions with QTL effect on multiple traits were identified. Stable QTL across seasons were identified. Of the 60 genic markers mapped, 21 were found at QTL peak or tightly linked with QTL. A gene-based marker XnhsbSFCILP67 (Sb03g028240) on SBI-03, encoding indole-3-acetic acid-amido synthetase GH3.5, was found to be involved in QTL for seven traits. The QTL-linked markers identified for 11 agronomic traits may assist in fine mapping, map-based gene isolation and also for improving post-rainy sorghum through marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:115–122

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Apel K, Rüdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5:40–44

    Article  PubMed  CAS  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  PubMed  CAS  Google Scholar 

  • Barry CS (2009) The stay-green revolution: recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. Plant Sci 176:325–333

    Article  CAS  Google Scholar 

  • Beil GM, Atkins RE (1967) Estimates of general and specific combining ability in F1 hybrids for grain yield and its components in grain sorghum, Sorghum vulgare, Pers. Crop Sci 7:225–228

    Article  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Biradar BD, Vastrad SM, Sajjanar GM (2004) Identification of combiners involving newly derived male sterile and restorer lines for yield and related traits in Rabi sorghum [Sorghum bicolor (L.) Moench]. Indian J Genet 64:237–238

    Google Scholar 

  • Blummel M, Rao PP (2006) Economic value of sorghum stover traded as fodder for urban and peri-urban dairy production in Hyderabad, India. SAT eJournal 2:1

    Google Scholar 

  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height QTL in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morihige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  PubMed  CAS  Google Scholar 

  • Campbell LG, Casady AJ (1969) Effects of a single height gene (Dw3) of Sorghum bicolor (L.) Moench at 1-dwarf and 2-dwarf height levels. Crop Sci 9:828–830

    Article  Google Scholar 

  • Campbell LG, Casady AJ, Crook WJ (1975) Effects of a single height gene (Dw3) of sorghum on certain agronomic characters. Crop Sci 15:595–599

    Article  Google Scholar 

  • Casady AJ (1965) Effect of a single height (Dw) gene of sorghum on grain yield, grain yield components, and test weight. Crop Sci 5:385–389

    Article  Google Scholar 

  • Casady AJ (1967) Effect of a single height gene (Dw3) of Sorghum vulgare Pers. on certain culm and leaf blade characteristics. Crop Sci 7(6):595–598

    Article  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed  CAS  Google Scholar 

  • Clarke JM, DePauw RM, Townley TF (1992) Evaluation of methods for quantification of drought tolerance in wheat. Crop Sci 32:723–728

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • DeLacy IH, Kaul S, Rana BS, Cooper M (2010) Genotypic variation for grain and stover yield of dryland (Rabi) sorghum in India-II. A characterization of genotype × environment interactions. Field Crops Res 118:236–242

    Article  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Article  CAS  Google Scholar 

  • Dufey I, Hiel MP, Hakizimana P, Draye X, Lutts S, Koné B, Dramé KN, Konaté KA, Sie M, Bertin P (2012) Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Sci 52:539–550

    Article  CAS  Google Scholar 

  • Endo M, Nakamura S, Araki T, Mochizuki N, Nagatani A (2005) Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17:1941–1952

    Article  PubMed  CAS  Google Scholar 

  • FAO (2009) http://faostat.fao.org/. Accessed 5 April 2010

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Gao LF, Jing RJ, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • George-Jaeggli B, Jordan DR, van Oosterom EJ, Hammer GL (2011) Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass. Field Crops Res 124:231–239

    Article  Google Scholar 

  • Gorad CT, Varshneya MC, Bote NL (1995) Evapotranspiration of post-rainy season sorghum under different soil moisture levels. J Maharashtra Agric Univ 20:74–77

    Google Scholar 

  • Graham D, Lessmann KJ (1966) Effect of height on yield and yield components of two isogenic lines of Sorghum vulgare Pers. Crop Sci 6:372–374

    Article  Google Scholar 

  • Green BR, Pichersky E, Kloppstech K (1991) Chlorophyll a/b-binding proteins: an extended family. Trends Biochem Sci 16:181–186

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Su G, Zhang J, Wang G (2010) Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol 7(12):1829–1838

    Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Hadley HH, Freeman JE, Javier EQ (1965) Effects of height mutations on grain yield in sorghum. Crop Sci 5:11–14

    Article  Google Scholar 

  • Hammer GL, Van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61:2185–2202

    Article  PubMed  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed N (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:143–148

    Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  PubMed  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Hörtensteiner S (2009) Staygreen regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jirali DI, Biradar BD, Rao SS (2007) Performance of Rabi sorghum genotypes under receding soil moisture conditions in different soil types. Karnataka J Agric Sci 20(3):603–604

    Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    PubMed  CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kim JS (2003) Genomic analysis of sorghum by fluorescence in situ hybridization. PhD thesis, Texas A&M University

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Klein PR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48(S1):S12–S26

    Google Scholar 

  • Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR, Burke J, Clifton S, Pratt MMC, Cox S, Dahlberg J, Erpelding J, Fulton TM, Fulton B, Fulton L, Gingle AR, Hash CT, Huang Y, Jordan D, Klein PE, Klein RR, Magalhaes J, McCombie R, Moore P, Mullet JE, Akins PO, Paterson AH, Porter K, Pratt L, Roe B, Rooney W, Schnable PS, Stelly DM, Tuinstra M, Ware D, Warek U (2005) Toward sequencing the sorghum genome. A U.S. National Science Foundation-sponsored workshop report. Plant Physiol 138:1898–1902

    Article  CAS  Google Scholar 

  • Kumar AA, Reddy BVS, Sharma HC, Hash CH, Rao PS, Ramaiah B, Reddy SP (2011) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2:589–600

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Lehmann EL (1975) Nonparametrics. McGraw-Hill, New York

    Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Liu XD, Shen YG (2004) NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Lett 569:337–340

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Mace E, Jordan D (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:1–23

    Article  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 22:26

    Article  Google Scholar 

  • Marri PR, Sarla N, Reddy LV, Siddiq E (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:33

    Article  PubMed  Google Scholar 

  • Matthews BF, Devine TE, Weisemann JM, Beard HS, Lewers KS, McDonald MH, Park YB, Maiti R, Lin JJ, Kuo J, Pedroni MJ, Cregan PB, Saunders JA (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci 41:516–521

    Article  CAS  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci 110(2):453–458

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize Br2 and sorghum Dw3 mutants. Science 302:81–84

    Article  PubMed  CAS  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:16469–16474

    Article  PubMed  CAS  Google Scholar 

  • Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi DVN, Seetharama N (2012) Characterization, development and mapping of Unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 29:543–564

    Article  CAS  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109(4):800–805

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320

    Article  PubMed  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Prabhakar, Raut MS (2010) Exploitation of heterosis using diverse parental lines in Rabi Sorghum. Electron J Plant Breed 1:680–684

  • Quinby JR (1967) The maturity genes of sorghum. In: Norman AG (ed) Adv Agron 19:267–305

  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Ramu P, Kassahun B, Senthilvel S, Ashok Kumar C, Jayashree B, Folkertsma RT, Ananda Reddy L, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Rana BS, Kaul SL, Appaji C, Prabhakar, Shetty K, Reddy BVS, Witcombe JR, Virk DS (2000) Participatory varietal selection in rabi sorghum in India. In: The international conference on “Participatory plant breeding and plant genetic research” held at Pokhara, Nepal

  • Rao PP, Basavaraj G, Ahmad W, Bhagavatula S (2010) An analysis of availability and utilization of sorghum grain in India. SAT eJournal V8:1-8

  • Reddy BVS, Seetharama N, House LR (1987) Sorghums in the post-rainy season. I. Effect of irrigation and date of sowing on the grain and stover yields of diverse cultivars. Exp Agric 24:31–36

    Article  Google Scholar 

  • Reddy PS, Reddy BVS, Kumar AA (2009) M35–1 derived sorghum varieties for cultivation during the postrainy season. SAT eJournal V7:1–4

    Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Rosenow DT, Clark LE, Dahlberg JA, Frederiksen RA, Odvody GN, Peterson GC, Miller FR, Woodfin CA, Schaefer K, Collins SD, Jones JW, Hamburger AJ (2002) Release of four sorghum parental lines ATx642 through ATx645. ISMN 43:24–30

    Google Scholar 

  • Sajjanar GM, Biradar BD, Biradar SS (2011) Evaluation of crosses involving Rabi landraces of sorghum for productivity traits. Karnataka J Agric Sci 24:227–229

    Google Scholar 

  • Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368

    Article  PubMed  CAS  Google Scholar 

  • Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747

    PubMed  CAS  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT® 9.2 user’s guide. SAS Institute Inc, Cary

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Satish K, Madhusudhana R, Padmaja PG, Seetharama N, JV Patil (2012) Development, genetic mapping of candidate gene based markers and their significant association with the shoot fly resistance QTLs in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed. doi:10.1007/s11032-012-9740-9

  • Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R, Balakrishna D, Venkatesh Bhat B, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009a) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009b) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Takai T, Yonemaru J, Kaidai H, Kasuga S (2012) Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica 187:411–420

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, Mcintyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. PMB 48:697–712

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Landi P (2003) Searching for QTLs controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    Article  CAS  Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2005) Map-QTL® 5: software for the mapping quantitative trait loci in mapping populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular facilitated studies of morphological traits in an elite maize population. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  Google Scholar 

  • VSN International (2012) GenStat for Windows, 15th edn. VSN International, Hemel Hempstead, UK. Web page: http://GenStat.co.uk

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen NT (2000) Molecular mapping of QTLs conferring staygreen in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Yu JK, La Rota CM, Kantety RV, Sorrells ME (2004) EST-derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genet 271:742–751

    CAS  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot. doi:10.1093/jxb/ers205

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Biotechnology (DBT), Government of India (GOI), for supporting this work under the network projects “Development and applications of Biotechnological tools for millet improvement” under Grant No. BT/PR 6031/AGR/02/307/2005 and the Director, Directorate of Sorghum Research (DSR), Rajendranagar, Hyderabad, for the facilities to undertake the study.The authors also sincerely thank the editor and the anonymous reviewers for their excellent suggestions, which improved the manuscript quality considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana.

Additional information

Communicated by A. Charcosset.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraja Reddy, R., Madhusudhana, R., Murali Mohan, S. et al. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 126, 1921–1939 (2013). https://doi.org/10.1007/s00122-013-2107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2107-8

Keywords

Navigation