Skip to main content

Advertisement

Log in

The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FFRR:

Field fruit-rot resistance

QTL:

Quantitative trait locus/loci

SSR:

Simple sequence repeat

SCAR:

Sequence-characterized amplified region

COS:

Conserved orthologous set

TAcy:

Total anthocyanin

PAC:

Proanthocyanidin

KW:

Kruskal–Wallis

IM:

Interval mapping

MQM:

Multiple QTL mapping

MRR:

Mean rot rating

RR:

Rot rating

MFW:

Mean fruit weight

SFY:

Sound fruit yield

GAIIx:

Genome Analyzer IIx

References

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGII. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hortic 810:181–186

    CAS  Google Scholar 

  • Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ (2011) Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 31:190–196

    Article  PubMed  CAS  Google Scholar 

  • Bink MCAM, Totir LR, ter Braak CJF, Winkler CR, Boer MP, Smith OS (2012) QTL analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113

    Article  PubMed  Google Scholar 

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562

    Article  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed  CAS  Google Scholar 

  • Chen Z, Hartmann HA, Wu M-J, Friedman EJ, Chen J-G, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60:583–597

    Article  PubMed  CAS  Google Scholar 

  • Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor Appl Genet 86:1001–1006

    Article  CAS  Google Scholar 

  • Deubert KH (1978) A rapid method for the extraction and quantitation of total anthocyanin of cranberry fruit. J Agric Food Chem 26:1452–1453

    Article  PubMed  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    Article  PubMed  CAS  Google Scholar 

  • Georgi LL, Herai RH, Vidal R, Carazzolle MF, Pereira GG, Polashock J, Vorsa N (2012) Cranberry microsatellite marker development from assembled next-generation genomic sequence. Mol Breeding 30:227–237. doi:10.1007/s11032-011-9613-7

    Article  CAS  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for the developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Green MB, Finn KJ, Li JJ (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science 329:943–946

    Article  PubMed  CAS  Google Scholar 

  • Hall SH, Galletta GJ (1971) Comparative chromosome morphology of diploid Vaccinium species. J Am Soc Hortic Sci 96:289–292

    Google Scholar 

  • Henry Y, Bedhomme M, Blanc G (2006) History, protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci 11:267–273

    Article  PubMed  CAS  Google Scholar 

  • Honig JA, Bonos SA, Meyer WA (2010) Isolation and characterization of 88 polymorphic microsatellite markers in Kentucky Bluegrass (Poa pratensis L.). HortScience 45:1759–1763

    Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282

    Article  Google Scholar 

  • Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, Häggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB (2010) A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619–1629

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Cicalese J, Vorsa N, Polashock J (2009) Breeding for fruit rot resistance in Vaccinium macrocarpon. Acta Hortic 810:191–198

    Google Scholar 

  • Jones P, Messner B, Nakajima J, Schäffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278(45):43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT: the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Kondo M, MacKinnon SL, Craft CC, Matchett MD, Hurta RAR, Neto CC (2011) Ursolic acid and its esters: occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in DU145 prostate tumor cells. J Sci Food Agric 91:789–796

    Article  PubMed  CAS  Google Scholar 

  • Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N (2010) Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 44:116–126

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7

    Article  PubMed  Google Scholar 

  • Kresty LA, Howell AB, Baird M (2011) Cranberry proanthocyanidins mediate growth arrest of lung cancer cells through modulation of gene expression and rapid induction of apoptosis. Molecules 16:2375–2390

    Article  PubMed  CAS  Google Scholar 

  • Laluk K, Mengiste T (2010) Necrotroph attacks on plants: Wanton destruction or covert extortion? Arabidopsis B 8:e0136. doi:10.1199/tab.0136

    Google Scholar 

  • Latunde-Dada AO (2001) Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2:197–198

    Article  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang S, Zeng Z-B (2006) Multiple-interval mapping for ordinal traits. Genetics 173:1649–1663

    Article  PubMed  CAS  Google Scholar 

  • Li H, Bradbury P, Ersoz E, Buckler ES, Wang J (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6(3):e17573. doi:10.1371/journal.pone.0017573

    Article  PubMed  CAS  Google Scholar 

  • Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664. doi:10.1002/mnfr.200600279

    Article  PubMed  CAS  Google Scholar 

  • Oudemans P, Caruso F, Stretch A (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:1176–1184

    Article  Google Scholar 

  • Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BSJ (2008) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 147:1046–1061

    Article  PubMed  CAS  Google Scholar 

  • Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J Am Soc Hortic Sci 127:677–684

    CAS  Google Scholar 

  • Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N (2002) Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Sci 163:241–251

    Article  CAS  Google Scholar 

  • Preuß A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S (2009) Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 583:1981–1986

    Article  PubMed  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Baljit K, Prabhu A-L, Tam A, Zhao YJ, Moore TA, Hirst M, Marra MA, Jones SJM, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z, Mescher MC, Frost CJ (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J Exp Bot 62:2633–2644

    Article  PubMed  CAS  Google Scholar 

  • Rowland LJ, Ogden E, Ehlenfeldt MK (2010) EST-PCR markers developed for highbush blueberry are also useful for genetic fingerprinting and relationship studies in rabbiteye blueberry. Sci Hortic 125:779–784

    Article  CAS  Google Scholar 

  • Sapers GM, Phillips JG, Rudolf HM, DiVito AM (1983) Cranberry quality: selection procedures for breeding programs. J Am Soc Hortic Sci 108:241–246

    CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234

    Article  CAS  Google Scholar 

  • Shabrova EV, Tarnopolsky O, Singh AP, Plutzky J, Vorsa N, Quadro L (2011) Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS ONE 6(10):e24634

    Article  PubMed  CAS  Google Scholar 

  • Simko I, Piepho H-P (2011) Combining phenotypic data from ordinal rating scales in multiple plant experiments. Trends Plant Sci 16:235–237

    Article  PubMed  CAS  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Singh RK, Kim KK, Satyan KS, Nussbaum R, Torres M, Brard L, Vorsa N (2009) Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin. Phytother Res 23:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Lange TS, Kim KK, Brard L, Horan T, Moore RG, Vorsa N, Singh RK (2012) Purified cranberry proanthocyanidines (PAC-1A) cause pro-apoptotic signaling, ROS generation, cyclophosphamide retention and cytotoxicity in high-risk neuroblastoma cells. Int J Oncol 40:99–108

    PubMed  CAS  Google Scholar 

  • Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750

    PubMed  CAS  Google Scholar 

  • Stiles CM, Oudemans PV (1998) Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology 89:218–225

    Article  Google Scholar 

  • Tadych M, Bergen MS, Johnson-Cicalese J, Polashock JJ, Vorsa N, White JF Jr (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116

    Article  Google Scholar 

  • Tanabe S, Santos J, La VD, Howell AB, Grenier D (2011) A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts. Molecules 16:2365–2374

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Urbaniak GC, Plous S (2012). Research Randomizer (Version 3.0) [Computer software]. Retrieved on 18 January 2012. http://www.randomizer.org/

  • Van Ooijen JW (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma B.V.

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Kyazma B.V.

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Res 93:343–349

    Article  Google Scholar 

  • Verhoeven KJF, Jannink J-L, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vorsa N, Johnson-Cicalese J (2005) Breeding the American cranberry for health constituents: genetic variation for proanthocyanidin content. Acta Hortic 715:243–251

    Google Scholar 

  • Vorsa N, Johnson-Cicalese J (2011) American cranberry, Chap. 6. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer Science and Business Media, LLC, pp 191–223. doi:10.1007/978-1-4419-0763-9_6

  • Vvedenskaya IO, Vorsa N (2004) Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci 167:1043–1054

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Pétiard, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by USDA SCRI grant number 2008-51180-04878, with additional funding from Ocean Spray Cranberries Incorporated. We thank Kristia Adams, Dayani Stinson, and Theodore Bunch, for technical assistance, and Dylan Baker for genotyping on the AdvanCE platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Georgi or Nicholi Vorsa.

Additional information

Communicated by H. Nybom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgi, L., Johnson-Cicalese, J., Honig, J. et al. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci. Theor Appl Genet 126, 673–692 (2013). https://doi.org/10.1007/s00122-012-2010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2010-8

Keywords

Navigation