Skip to main content

Advertisement

Log in

Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R 2 = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abadia J, Vazquez S, Rellan-Alvarez R, El-Jendoubi H, Abadia A, Álvarez-Fernández A, Lopez-Millan AF (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482

    Article  PubMed  CAS  Google Scholar 

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109(5):1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Álvarez-Fernández A, García-Marco S, Lucena JJ (2005) Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis. Eur J Agron 22:119–130

    Article  Google Scholar 

  • Anwar SA, McKenry M, Ramming D (2002) A search for more durable grape rootstock resistance to root-knot nematode. Am J Enol Vitic 53:19–23

    Google Scholar 

  • Asins MJ, Bolarin MC, Perez-Alfocea F, Estan MT, Martinez-Andujar C, Albacete A, Villalta I, Bernet GP, Dodd IC, Carbonnell EA (2010) Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor Appl Genet 121:105–115

    Article  PubMed  CAS  Google Scholar 

  • Bauer P, Bereczky Z, Brumbarova T, Klatte M, Wang HY (2004) Molecular regulation of the iron uptake in the dicot species Lycopersicon esculentum and Arabidopsis thaliana. Soil Sci Plant Nut 50:997–1001

    Article  CAS  Google Scholar 

  • Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45:260–261

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco L (1995) Utilization of a non-destructive chlorophyll meter to assess chlorophyll concentration in grapevine leaves. Bull. OIV 68:404–414

    CAS  Google Scholar 

  • Bavaresco L, Lovisolo C (2000) Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39:89–92

    Google Scholar 

  • Bavaresco L, Fregoni M, Fraschini P (1991) Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a V. vinifera cultivar. Plant Soil 130:109–113

    Article  CAS  Google Scholar 

  • Bavaresco L, Franchini P, Ferino A (1993) Effect of the rootstock on the occurrence of lime-induced chlorosis of potted Vitis Vinifera L. cv. Pinot Blanc. Plant Soil 157:303–311

    Article  Google Scholar 

  • Bavaresco L, Fregoni M, Perino A (1994) Physiological aspects of lime-induced chlorosis in some Vitis species. II. Pot trial on calcareous soil. Vitis 33:123–126

    Google Scholar 

  • Bavaresco L, Zeller de Macedo Basto Gonçalves MI, Civardi S, Gatti M, Ferrari F (2010) Effects of traditional and new methods on overcoming lime-indudec chlorosis of grapevine. Am J Enol Vitic 61:186–190

    CAS  Google Scholar 

  • Blair MW, Knewston SJB, Astudillo C, Li C-M, Fernandez AC, Grusak MA (2010) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215–227

    Article  PubMed  Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl E, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53

    Article  PubMed  Google Scholar 

  • Brand JD, Tang C, Graham RD (2000) The effect of soil moisture on the tolerance of Lupinus pilosus genotypes to a calcareous soil. Plant Soil 219:263–271

    Article  CAS  Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed  Google Scholar 

  • Charlson DV, Cianzio SR, Shoemaker RC (2003) Associating SSR markers with soybean resistance to iron deficiency chlorosis. J Plant Nutr 26:2267–2276

    Article  CAS  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative Trait Loci to underlying genes. BMC Plant Biol 8(38)

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  PubMed  CAS  Google Scholar 

  • Dasgan HY, Abak K, Cakmak I, Römheld V, Sensoy S (2004) Inheritance of tolerance to leaf iron deficiency chlorosis in tomato. Euphytica 139:51–57

    Article  CAS  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113(3):369–382

    Google Scholar 

  • Durret TP, Connolly EL, Rogers EE (2006) Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron-deficiency-inducible root Fe(III) chelate reductase activity. Plant J 47:467–479

    Article  Google Scholar 

  • Enomoto Y, Goto F (2008) Long-distance signaling of iron deficiency in plants. Plant Signal Behav 3:396–397

    Article  PubMed  Google Scholar 

  • Estan MT, Villalta I, Bolarin MC, Carbonell EA, Asins MJ (2009) Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theor Appl Genet 118:305–312

    Article  PubMed  CAS  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Toepfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factor on a molecular map of grapevine. Theor Appl Genet 108:505–515

    Article  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo MJ, Dirlewanger E, Moreno MT, Gogorcena Y (2012) Genetic analysis of iron chlorosis tolerance in Prunus rootstocks. Tree Genet Genomes. doi:10.1007/s11295-012-0474-y

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategies and RAPD markers. Theor Appl Genet 137:1121–1137

    CAS  Google Scholar 

  • Gruber B, Kosegarten H (2002) Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis. J Plant Nutr Soil Sci 165:111–117

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breeding Rev 22:9–112

    Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, DelFabbro C, Alaux M, DiGaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, LeClainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quetier F, Wincker O (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferruc reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  • Jimenez S, Gogorcena Y, Hévin C, Rombolà A, Ollat N (2007) Nitrogen nutrition influences Strategy I responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355

    Article  CAS  Google Scholar 

  • Klein MA, Lopez-Millan AF, Grusak MA (2012) Quantitative trait locus analysis of root ferric reductase activity and leaf chlorosis in the model legume, Lotus japonicus. Plant Soil 351:363–376

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of distances from recombination values. Ann Eugenet 12:172–175

    Article  Google Scholar 

  • Ksouri R, Gharsalli M, Lachaâl M (2005) Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency. J Plant Physiol 162:335–341

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Cianzio SR, Shoemaker RC (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3:219–229

    Article  CAS  Google Scholar 

  • Lin S, Grant D, Cianzio S, Shoemaker R (2000) Molecular characterization of iron deficiency chlorosis in soybean. J Plant Nutr 23:1929–1939

    Article  CAS  Google Scholar 

  • Lindsay WL (1984) Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. J Plant Nutr 7:489–500

    Article  CAS  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Acad Sci USA 96:7098–7103

    Article  CAS  Google Scholar 

  • Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Mandl K, Santiago J-L, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica 149:133–144

    Article  CAS  Google Scholar 

  • Marguerit E, Némorin A, Manicki A, Boury C, Donnart M, Butterlin G, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    Article  PubMed  Google Scholar 

  • Marguerit E, Brendel O, Lebon E, Van Leeuwen C, Ollat N (2012) Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol 194:416–429

    Article  PubMed  CAS  Google Scholar 

  • May P (1994) Using grapevine rootstocks—the Australian perspective. Winetitles, Adelaide

    Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues—iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport on plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  PubMed  CAS  Google Scholar 

  • Nourse SM, Elings A, Brewbaker JL (1999) Quantitative trait loci associated with lime-induced chlorosis in recombinant inbred lines of maize. Maydica 44:293–299

    Google Scholar 

  • Ollat N, Laborde B, Neveux M, Diakou-Verdin P, Renaud C, Moing A (2003) Organic acid metabolism in roots of various grapevine (Vitis) rootstocks submitted to iron deficiency and bicarbonate nutrition. J Plant Nutr 26:2165–2176

    Article  CAS  Google Scholar 

  • Peryea FJ, Kammereck R (1997) Use of Minolta SPAD-502 chlorophyll meter to quantify the effectiveness of mid-summer trunk injection of iron on chlorotic pear trees. J Plant Nutr 20:1457–1463

    Article  CAS  Google Scholar 

  • Pouget R (1987) Rootstocks for controlling vine vigour and improving wine quality. Acta Hortic 206:109–118

    Google Scholar 

  • Pouget R, Ottenwælter M (1973) Etude méthodologique de la résistance à la chlorose calcaire chez la vigne: principe de la méthode des greffages réciproques et application à la recherche de porte-greffes résistants. Annales Amélioration des Plantes 23:347–356

    Google Scholar 

  • Pouget R, Ottenwælter M (1978) Etude de l’adaptation de nouvelles variétés de porte-greffes à des sols très chlorosants. Conn Vigne Vin 12:167–175

    Google Scholar 

  • Prinzenberg AE, Barbier H, Salt DE, Stich B, Reymond M (2010) Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis. Plant Physiol 154:1361–1371

    Article  PubMed  CAS  Google Scholar 

  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on the extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Genet 113:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS, Walker MA (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681

    Article  PubMed  CAS  Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122(6):1059–1073

    Article  PubMed  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2004) Iron metabolism in tomato and watermelon plants: influence of grafting. J Plant Nutr 27:2221–2234

    Article  CAS  Google Scholar 

  • Rombolà A, Tagliavini M (2006) Iron nutrition of fruit tree crops. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 61–83

    Chapter  Google Scholar 

  • Römheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204

    Google Scholar 

  • Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando M, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W (2006) Iron stress responses in roots of strategy I plants. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizosphere microorganisms. Springer, The Netherlands, pp 229–250

    Chapter  Google Scholar 

  • Séguéla M, Briat JF, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependant pathway. Plant J 55:289–300

    Article  PubMed  Google Scholar 

  • Simko I, van den Berg JH, Vreugdenhil D, Ewing EE (2008) Mapping loci for chlorosis associated with chlorophyll b deficiency in potato. Euphytica 162:99–107

    Article  CAS  Google Scholar 

  • Sociasi y Company R, Gomez Aparisi J, Felipe AJ (1995) A genetical approach to iron chlorosis in decideous fruit trees. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, pp 167–174

  • Srinives P, Kitsanachandee R, Chalee T, Sommanas W, Chanprane S (2010) Inheritance of resistance to iron deficiency and identification of AFLP markers associated with the resistance in mungbean (Vigna radiata (L.) Wilczek). Plant Soil 335:423–437

    Article  CAS  Google Scholar 

  • Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchards and vineyard ecosystems. Eur J Agron 15:71–92

    Article  CAS  Google Scholar 

  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics 176:2637–2650

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2000) MapQTL version 4.0: user friendly power in QTL mapping. Addendum to the manual of version 3.0. Plant Research International, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varanini Z, Maggioni A (1982) Iron reduction and uptake by grapevine roots. J Plant Nutr 5:521–529

    Article  CAS  Google Scholar 

  • Vert GA, Briat JF, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804

    Article  PubMed  CAS  Google Scholar 

  • Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam-Blondon A-F, Thomas M, This P, Velasco R (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499–511

    Article  PubMed  CAS  Google Scholar 

  • Villalta I, Bernet GP, Carbonnell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MAPCHART: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang J, McClean PE, Lee R, Goos RJ, Helms T (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116:777–787

    Article  PubMed  CAS  Google Scholar 

  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Xu K, Riaz S, Roncoroni NC, Jin Y, Hu R, Zhou R, Walker MA (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311

    Article  PubMed  CAS  Google Scholar 

  • Yadava UL (1986) A rapid nondestructive method to determine chlorophyll in intact leaves. HortScience 21:1449–1450

    CAS  Google Scholar 

  • Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian EM (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet. doi:10.1007/s00122-009-1107-1

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the excellent assistance of Bernard Douens, Jean-Pierre Petit and Jean-Paul Robert who grafted the plants and took care of the plant material. Jean-Paul Dodane, as a student, contributed largely to the work. Particular thanks to Pr Serge Delrot, Dr Elisa Marguerit and Dr Sarah Cookson for improvement of the English grammar and the critical reading of the manuscript. This work was financially supported by Region Aquitaine in the frame of the “Fonds commun de cooperation Aquitaine-Aragon”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-François Bert.

Additional information

Communicated by R. Toepfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bert, PF., Bordenave, L., Donnart, M. et al. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet 126, 451–473 (2013). https://doi.org/10.1007/s00122-012-1993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1993-5

Keywords

Navigation