Skip to main content
Log in

Detection of QTL for flowering time in multiple families of elite maize

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Flowering time is a fundamental quantitative trait in maize that has played a key role in the postdomestication process and the adaptation to a wide range of climatic conditions. Flowering time has been intensively studied and recent QTL mapping results based on diverse founders suggest that the genetic architecture underlying this trait is mainly based on numerous small-effect QTL. Here, we used a population of 684 progenies from five connected families to investigate the genetic architecture of flowering time in elite maize. We used a joint analysis and identified nine main effect QTL explaining approximately 50 % of the genotypic variation of the trait. The QTL effects were small compared with the observed phenotypic variation and showed strong differences between families. We detected no epistasis with the genetic background but four digenic epistatic interactions in a full 2-dimensional genome scan. Our results suggest that flowering time in elite maize is mainly controlled by main effect QTL with rather small effects but that epistasis may also contribute to the genetic architecture of the trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin DF, Lee M (1996) Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39:957–968

    Article  PubMed  CAS  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher T (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB et al (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    Article  PubMed  CAS  Google Scholar 

  • Colasanti J, Tremblay R, Wong AY, Coneva V, Kozaki A et al (2006) The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7:158–175

    Article  PubMed  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–822

    Article  PubMed  CAS  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146:250–264

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • El-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito D, Broekhof JLM, van der Poel HJA, van Eijk MJT (2006) New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 172:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edin 52:399–433

    Google Scholar 

  • Goodman MM (1988) The history and evolution of maize. CRC Crit Rev Plant Sci 7:197–220

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Hallauer AR, Russell WA, Lamkey KR (1988) Corn Breeding. In: Sprague GF, Dudley JW (eds) Corn and Corn Improvement. Agronomy, vol 18. Am. Soc. of Agron, Madison, pp 463–564

    Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  PubMed  CAS  Google Scholar 

  • Holland JB, Portyanko VA, Hoffmann DL, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105:113–126

    Article  PubMed  CAS  Google Scholar 

  • Jannink JL, Jansen RC (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T et al (2011) Association mapping in an elite maize breeding population. Theor Appl Genet 123:847–858

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Assoc, Sunderland

    Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Mechin V, Argillier O, Hébert Y, Guingo E, Moreau L et al (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignifications in silage maize. Crop Sci 41:690–697

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. http://www.R-project

  • Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022

    Article  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T et al (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. PNAS 104:11376–11381

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2008) SAS/STAT 9.2 user’s guide. SAS Inst., Cary

  • Schnell FW (1965) Die Covarianz zwischen Verwandten in einer genorthogonalen Population I. Allgemeine Theorie. Biom Z 7:1–49

    CAS  Google Scholar 

  • Steinhoff J, Liu W, Maurer HP, Würschum T, Longin FH et al (2011) Multiple-line cross QTL-mapping in European elite maize. Crop Sci 51:2505–2516

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley H, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Uwatoko N, Onishi A, Ikeda Y, Manabu K, Sasaki A, Matsubata K, Itoh Y, Sano Y (2008) Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod basic vegetative growth and optimum photoperiod. Euphytica 163:167–175

    Article  CAS  Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: II. Plant height and flowering. Crop Sci 36:1320–1327

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109–118

    Article  PubMed  Google Scholar 

  • Würschum T, Liu W, Gowda M, Maurer HP, Fischer S et al (2012a) Comparison of biometrical models for joint linkage association mapping. Heredity 108:332–340

    Article  PubMed  Google Scholar 

  • Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012b) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161

    Article  PubMed  Google Scholar 

  • Xue W, Yongzhong X, Weng X, Zhao Y, Tang W et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Biometric and Bioinformatic Tools for Genomics based Plant Breeding project of the GABI –FUTURE initiative. We are grateful to the editor and two anonymous reviewers for their helpful comments and suggestions. This paper is dedicated to Dr. H.F. Utz, whose enthusiasm for QTL mapping inspired our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Additional information

Communicated by J. Yu.

J. Steinhoff and W. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinhoff, J., Liu, W., Reif, J.C. et al. Detection of QTL for flowering time in multiple families of elite maize. Theor Appl Genet 125, 1539–1551 (2012). https://doi.org/10.1007/s00122-012-1933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1933-4

Keywords

Navigation