Skip to main content
Log in

Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops especially wheat (Triticum aestivum L., 2n = 6x = 42, genomes AABBDD) in many parts of the world. The greenbug-resistance gene Gb3 originated from Aegilops tauschii Coss. (2n = 2x = 14, genome DtDt) has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. We previously mapped Gb3 in a recombination-rich, telomeric bin of wheat chromosome arm 7DL. In this study, high-resolution genetic mapping was carried out using an F2:3 segregating population derived from two Ae. tauschii accessions, the resistant PI 268210 (original donor of Gb3 in the hexaploid wheat germplasm line ‘Largo’) and susceptible AL8/78. Molecular markers were developed by exploring bin-mapped wheat RFLPs, SSRs, ESTs and the Ae. tauschii physical map (BAC contigs). Wheat EST and Ae. tauschii BAC end sequences located in the deletion bin 7DL3-0.82–1.00 were used to design STS (sequence tagged site) or CAPS (Cleaved Amplified Polymorphic Sequence) markers. Forty-five PCR-based markers were developed and mapped to the chromosomal region spanning the Gb3 locus. The greenbug-resistance gene Gb3 now was delimited in an interval of 1.1 cM by two molecular markers (HI067J6-R and HI009B3-R). This localized high-resolution genetic map with markers closely linked to Gb3 lays a solid foundation for map based cloning of Gb3 and marker-assisted selection of this gene in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azhaguvel P, Vidya Saraswathi D, Komatsuda T (2006) High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated x wild barley (Hordeum vulgare). Plant Sci 170:1087–1094

    Article  CAS  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Chapman NH, Burt C, Dong H, Nicholson P (2008) The development of PCR-based markers for the selection of eyespot resistance genes Pch1 and Pch2. Theor Appl Genet 117:425–433

    Article  PubMed  CAS  Google Scholar 

  • Dogimont C, Bendahmane A, Pitrat M, Burget-Bigeard E,Hagen L, Le Menn A, Pauquet J, Rouselle P, Caboche M, Chovelon V (2009) Gene resistant to Aphis gossypii. US Patent Application US Patent 7576264

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat Genome. Nucleic Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 4:118–130

    Article  PubMed  CAS  Google Scholar 

  • Giovanini MP, Saltzmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE (2007) A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 8:69–82

    Article  PubMed  CAS  Google Scholar 

  • Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breed 122:83–85

    Article  CAS  Google Scholar 

  • Guo PG, Bai GH, Shaner GE (2003) AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet 106:1011–1017

    PubMed  CAS  Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QM (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Hayden MJ, Stephenson P, Logojan AM, Khatkar D, Rogers C, Elsden J, Koebner RMD, Snape JW, Sharp PJ (2006) Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theor Appl Genet 113:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Hollenhorst MM, Joppa LR (1983) Chromosomal locations of genes for resistance to greenbug in ‘Largo’ and ‘Amigo’ wheats. Crop Sci 23:91–93

    Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, Kianian PM, Simons K, Gehlhar S, Rust JL, Syamala RR, Obeori K, Bhamidimarri S, Karunadharma P, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Akhunov ED, Dvorák J, Miftahudin Ross K, Gustafson JP, Radhawa HS, Dilbirligi M, Gill KS, Peng JH, Lapitan NL, Greene RA, Bermudez-Kandianis CE, Sorrells ME, Feril O, Pathan MS, Nguyen HT, Gonzalez-Hernandez JL, Conley EJ, Anderson JA, Choi DW, Fenton D, Close TJ, McGuire PE, Qualset CO, Kianian SF (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Janda J, Bartoš J, Šafář J, Kubaláková M, Valárik M, Číhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Doležel J (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Janda J, Šafář J, Kubaláková M, Bartoš J, Kovářová P, Suchánková P, Pateyron S, Číhalíková J, Sourdille P, Šimková H, Fairaivre-Rampant P, Hřibová E, Bernard M, Lukaszewski A, Doležel J, Chalhoub B (2006) Advanced resources for plant genomics: BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    Article  PubMed  CAS  Google Scholar 

  • Joppa LR, Williams ND (1982) Registration of Largo, a greenbug resistant hexaploid wheat. Crop Sci 22:901–902

    Google Scholar 

  • Kim K-S, Bellendir S, Hudson KA, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010) Fine mapping the soybean aphid resistance gene Rag1 in soybean. Theor Appl Genet 120:1063–1071

    Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lazar MD, Worrall WD, Porter KB, Tuleen NA (1996) Registration of eight closely related wheat germplasm lines differing in biotype E greenbug resistance. Crop Sci 36:1419

    Google Scholar 

  • Lazar MD, Worrall WD, Peterson GL, Porter KB, Rooney LW, Tuleen NA, Marshall DS, McDaniel ME, Nelson LR (1997) Registration of TAM 110. Crop Sci 37:1978–1979

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP 3.0. Whitehead Institute for Biomedical Research Technical Report, Cambridge, 1993

  • Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci 22:1089

    Article  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode gene Mi from tomato is a member of the leucine zipper-nucleotide binding leucine-rich repeat family of plant genes. Plant Cell Rep 10:1037–1319

    Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  Google Scholar 

  • Šafář J, Šimková H, Kubaláková M, Číhaliková J, Suchánková P, Bartoš J, Doležel J (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  • Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P (2007) Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet 115:451–461

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Ohm H (2007) Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol Breed 20:131–140

    Article  CAS  Google Scholar 

  • Šimková H, Šafář J, Suchánková P, Kovarova P, Bartoš J, Kubaláková M, Janda J, Cihalikova J, Mago R, Lelley T, Doležel J (2008) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.). BMC Genomics 9:237

    Article  PubMed  Google Scholar 

  • Šimková H, Šafář J, Kubaláková M, Suchánková P, Číhalíková J, Robert-Quatre H, Azhaguvel P, Weng Y, Peng J, Lapitan NLV, Ma Y, You FM, Luo M-C, Bartoš J, Doležel J (2011) BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J Biomed Biotechnol Volume 2011 (2011), Article ID 302543

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Webster JA, Kenkel P (1999) Benefits of managing small-grain pests with plant resistance. In: Wiseman BR, Webster JA (eds) Economic, environmental, and social benefits of resistance in field crops. Entomol Soc Am, Lanham, pp 87–114

    Google Scholar 

  • Weng Y, Lazar MD (2002) Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed 121:218–223

    Article  CAS  Google Scholar 

  • Weng Y, Tuleen NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat. Theor Appl Genet 100:519–527

    CAS  Google Scholar 

  • Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469

    Article  PubMed  CAS  Google Scholar 

  • Xu DH, Ban T (2004) Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 47:660–665

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Deal KR, Li W, Covaleda L, Chang Y-L, Dvorak J, Luo MC, Gill BS, Anderson OD, Zhang HB (2002) Construction and characterization of five large-insert BAC and BIBAC libraries of Aegilops tauschii, the diploid donor of the wheat D genome. In: 10th international plant and animal genome conference, San Diego

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2003) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko EV, Flinn MB (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor Appl Genet 109:289–293

    Article  PubMed  CAS  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor Appl Genet 111:831–837

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the USDA-NRI grant (CSREES# 2006-35301-16892) to Y. W. and partly supported by the Wheat MAS Project (CAP# 2006-55606-16629) to J. C. R. The authors are grateful to Peihuan Yan, Yuanhong Du, Jony Simmons and Gina Rudd for technical support. The authors also thank Takao Komatsuda (National Institute of Agrobiological Sciences, Japan) for useful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Perumal Azhaguvel or Yiqun Weng.

Additional information

Communicated by C. Feuillet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (xlsx 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azhaguvel, P., Rudd, J.C., Ma, Y. et al. Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii . Theor Appl Genet 124, 555–564 (2012). https://doi.org/10.1007/s00122-011-1728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1728-z

Keywords

Navigation