Skip to main content
Log in

Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Understanding the extent and partitioning of diversity within and among crop landraces and their wild/weedy relatives constitutes the first step in conserving and unlocking their genetic potential. This study aimed to characterize the genetic structure and relationships within and between cultivated and wild sorghum at country scale in Kenya, and to elucidate some of the underlying evolutionary mechanisms. We analyzed at total of 439 individuals comprising 329 cultivated and 110 wild sorghums using 24 microsatellite markers. We observed a total of 295 alleles across all loci and individuals, with 257 different alleles being detected in the cultivated sorghum gene pool and 238 alleles in the wild sorghum gene pool. We found that the wild sorghum gene pool harbored significantly more genetic diversity than its domesticated counterpart, a reflection that domestication of sorghum was accompanied by a genetic bottleneck. Overall, our study found close genetic proximity between cultivated sorghum and its wild progenitor, with the extent of crop-wild divergence varying among cultivation regions. The observed genetic proximity may have arisen primarily due to historical and/or contemporary gene flow between the two congeners, with differences in farmers’ practices explaining inter-regional gene flow differences. This suggests that deployment of transgenic sorghum in Kenya may lead to escape of transgenes into wild-weedy sorghum relatives. In both cultivated and wild sorghum, genetic diversity was found to be structured more along geographical level than agro-climatic level. This indicated that gene flow and genetic drift contributed to shaping the contemporary genetic structure in the two congeners. Spatial autocorrelation analysis revealed a strong spatial genetic structure in both cultivated and wild sorghums at the country scale, which could be explained by medium- to long-distance seed movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldrich PR, Doebley J (1992) Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet 85:293–302

    Google Scholar 

  • Aldrich PR, Doebley J, Schertz KF, Stec A (1992) Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet 85:451–460

    CAS  Google Scholar 

  • Auer C (2008) Ecological risk assessment and regulation for genetically-modified ornamental plants. Crit Rev Plant Sci 27:255–271

    Article  Google Scholar 

  • Ayana A, Bekele E, Bryngelsson T (2000a) Genetic variation in wild sorghum (Sorghum bicolor ssp verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132:249–254

    Article  CAS  PubMed  Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2000b) Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor (L.) Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 47:471–482

    Article  Google Scholar 

  • Ayana A, Byngelsson T, Bekele E (2001) Geographic and altitudinal allozyme variation in sorghum (Sorghum bicolor (L.) Moench) landraces from Ethiopia and Eritrea. Hereditas 135:1–12

    Article  CAS  PubMed  Google Scholar 

  • Barnaud A, Deu M, Garine E, Mckey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248

    Article  PubMed  Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    Article  CAS  Google Scholar 

  • Barro-Kondombo C, Sagnard F, Chantereau J, Deu M, vom Brocke K, Durand P, Gozé E, Zongo JD (2010) Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theor Appl Genet 120:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 405, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier

  • Bhatia CR, Mitra R (2003) Consequences of gene flow from genetically engineered crops. Curr Sci India 84:138–141

    Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in Sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30

    Article  CAS  PubMed  Google Scholar 

  • Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27:25–49

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize RD (1982) Poaceae. Flora of Tropical East Africa, Part 3 AA Balkema, Rotterdam

  • Cleveland DA, Soleri D (2005) Rethinking the risk management process for genetically engineered crop varieties in small-scale, traditionally based agriculture. Ecol Soc 10:1–33

    Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Cui YX, Xu GW, Magill CW, Schertz KF, Hart GE (1995) RFLP-based assay of Sorghum bicolor (L) Moench. genetic diversity. Theor Appl Genet 90:787–796

    Article  CAS  Google Scholar 

  • Deu M, Hamon P, Chantereau J, Dufour P, D’Hont A, Lanaud C (1995) Mitochondrial DNA diversity in wild and cultivated sorghum. Genome 38:635–645

    Article  CAS  PubMed  Google Scholar 

  • Deu M, Sagnard F, Chantereau J, Calatayud C, Hérault D, Mariac C, Pham JL, Vigouroux Y, Kapran I, Traoré PS, Mamadou A, Gérard B, Ndjeunga J, Bezançon G (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–913

    Article  CAS  PubMed  Google Scholar 

  • Djè Y, Ater M, Lefèbvre C, Vekemans X (1998) Patterns of morphological and allozyme variation in sorghum landraces of northwestern Morocco. Genet Resour Crop Evol 45:541–548

    Article  Google Scholar 

  • Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163

    Article  Google Scholar 

  • Dogget H (1988) Sorghum. Longman Scientific and Technical, Essex

    Google Scholar 

  • Dogget H, Majisu BN (1968) Disruptive selection in crop development. Heredity 23:1–23

    Article  Google Scholar 

  • Dogget H, Prasada Rao KE (1995) Sorghum. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Group, Essex, pp 140–159

    Google Scholar 

  • Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrids development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in the cultivar development. Crop Science Society of America, Madison, pp 69–101

    Google Scholar 

  • Ellstrand NC (1992) Gene flow by pollen: Implications for plant conservation genetics. Oikos 63:77–86

    Article  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Geneflow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Epperson BK (1993) Recent advances in correlation analysis of spatial patterns of genetic variation. Evol Biol 27:95–155

    Google Scholar 

  • Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65:227–237

    Article  PubMed  Google Scholar 

  • Evanno S, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval LG, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • FAO (2008) FAOSTAT. http://faostat.fao.org

  • Folkertsma RF, Rattunde HFW, Chandra S, Raju GS, Hash CT (2005) The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409

    Article  CAS  PubMed  Google Scholar 

  • Frankel OH, Hawkes JG (1975) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant diversity. Cambridge University Press, New York

    Google Scholar 

  • Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez G, Liu K, Buckler ES, Doebley J (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. In: Jannick J (ed) Plant breeding reviews, Volume 24, Part 2: long-term selection: crops, animals, bacteria. Wiley, New York

    Google Scholar 

  • Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversity and fixation indices. (version 2932)

  • Gurney AL, Press MC, Scholes JD (2002) Can wild relatives of sorghum provide new sources of resistance or tolerance against Striga species? Weed Sci 42:317–324

    Google Scholar 

  • Halfhill MD, Zhu B, Warwick SI, Raymer PI, Millwood RJ, Weissinger AK, Stewart NC Jr (2004) Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions. Environ Biosafety Res 3:73–81

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol 2:618–620

    Article  Google Scholar 

  • Harlan JR, De Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–177

    Article  Google Scholar 

  • Hartl DL, Clark G (1997) Principles of population genetics. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proc R Soc Lond B 270:1879–1886

    Article  Google Scholar 

  • Hulbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 11:1104–1109

    Google Scholar 

  • International Ltd VSN (2007) GenStat Discovery Edition 3 VSN International Ltd. Hernel Hempstead, UK

    Google Scholar 

  • Kalinowski S (2005) HP-RARE 10: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol 5:187–189

    Article  CAS  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kamala V, Sharma HC, Manohar Rao D, Varaprasad KS, Bramel PJ (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 128:137–142

    Article  Google Scholar 

  • Ladizinsky G (1999) Plant evolution under domestication. Kluwer Academic Publishers, London

    Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seeds plants. Evol Biol 7:139–220

    Google Scholar 

  • Mace EM, Buhariwalla HK, Crouch JH (2003) A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459a–500h

    Article  Google Scholar 

  • Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, Chantereau J, Gérard B, Ndjeunga J, Bezançon G, Pham JL, Vigouroux Y (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Morden CW, Doebley JF, Schertz KF (1990) Allozyme variation among the spontaneous species of Sorghum section Sorghum (Poaceae). Theor Appl Genet 80:296–304

    Article  Google Scholar 

  • Mutegi E, Sagnard F, Muraya M, Kanyenji B, Rono B, Mwongera C, Marangu C, Kamau J, Parzies H, de Villiers S, Semagn K, Traoré PS, Labuschagne M (2010) Ecogeographical distribution of wild weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genet Resour Crop Evol 57:243–253

    Article  Google Scholar 

  • Neal D (2004) Introduction to population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nkongolo KK, Nsapato L (2003) Genetic diversity in Sorghum bicolor (L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Genet Resour Crop Evol 50:149–156

    Article  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin

  • Prasanth V, Chandra S, Jayashree B, Hoisington D (2006) AlleloBin—a program for allele binning of microsatellite markers based on the algorithm of Idury and Cardon (1997). ICRISAT International Crops Research Institute for the Semi, Arid Tropics

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rao Kameswara N, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Article  Google Scholar 

  • Reed JD, Ramundo BA, Claflin LF, Tuinstra MR (2002) Analysis of resistance to ergot in sorghum and potential alternate hosts. Crop Sci 42:1135–1138

    Article  Google Scholar 

  • Rich PJ, Grenier U, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229

    Article  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Sagnard F, Barnaud A, Deu M, Barro C, Luce C, Billot C, Rami JF, Bouchet S, Dembelé D, Pomies V, Calatayud C, Rivallan R, Joly H, vom Brocke K, Touré A, Chantereau J, Bezançon G, Vaksmann M (2008) Multi-scale analysis of sorghum genetic diversity: understanding the evolutionary processes for in situ conservation. Cah Agric 17:114–121

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. A poor man’s approach to genotyping for research and high throughput diagnostics. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host plant preference and oviposition responses of the sorghum midge Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of Sorghum. J Appl Ent 125:109–114

    Article  Google Scholar 

  • Snow AA, Moran-Palma P (1997) Commercialization of transgenic plants: potential ecological risks. Bioscience 47:86–96

    Article  Google Scholar 

  • Sokal RR, Oden NL (1978) Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc 10:249

    Google Scholar 

  • Sombroek WC, Braun HMH, van der Pour BJA (1982) Explanatory soil map and agro-climatic zone map of Kenya. Report E1:1–56

    Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org

  • Tesso T, Kapran I, Grenier C, Snow A, Sweeney P, Pedersen J, Marx D, Bothma G, Ejeta G (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431

    Article  Google Scholar 

  • Thies JE, Devare MH (2007) An ecological assessment of transgenic crops. J Dev Stud 43:97–129

    Article  Google Scholar 

  • Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

This study formed part of the project, “Environmental risk assessment for the introduction of genetically modified sorghum in Mali and Kenya” funded by the United States Agency for International Development (USAID) Biotechnology and Biodiversity Interface (BBI) Program. We are deeply indebted to the late Dr. Fabrice Sagnard (Principle Investigator), who offered exemplary leadership and immense scientific contribution to the entire project. We acknowledge Caroline Mwongera, Charles Marangu and Bernard Rono who participated in collections as well as farmers from various sorghum growing areas of Kenya and the National Genebank of Kenya for providing the seed samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mutegi.

Additional information

Communicated by T. Luebberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutegi, E., Sagnard, F., Semagn, K. et al. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122, 989–1004 (2011). https://doi.org/10.1007/s00122-010-1504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1504-5

Keywords

Navigation