Skip to main content
Log in

Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich PR, Doebley J, Schertz KF, Stec A (1992) Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor Appl Genet 85:451–460

    CAS  Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2000) Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor [L.] Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 47:471–482

    Article  Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2001) Geographic and altitudinal allozyme variation in sorghum (Sorghum bicolor [L.] Moench) landraces from Ethiopia and Eritrea. Hereditas 135:1–12

    Article  PubMed  CAS  Google Scholar 

  • Barnaud A, Deu M, Garine E, McKey D, Joly H (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248

    Article  PubMed  Google Scholar 

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collection. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2002) Genetix 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France. http://www.univ-montp2.fr/∼genetix/genetix/genetix.htm

  • Bellon MR (1997) On farm conservation as a process: an analysis of its components. In: Sperling L, Loevinsohn M (eds) Using diversity: enhancing and maintaining genetic resources on-farm. IDRC, Ottawa, Canada. http://www.idrc.ca/en/ev-85109-201-1-DO_TOPIC.html

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L. Moench). Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor [L.] Moench). Theor Appl Genet 93:190–198

    Article  CAS  Google Scholar 

  • Brush SB (1995) In situ conservation of landraces in centers of crop diversity: implications of germplasm conservation and utilization. Crop Sci 35:46–354

    Article  Google Scholar 

  • Brush SB (2000) The issue of in situ conservation of genetic resources. In: Brush SB (eds) Genes in the field: on-farm conservation of crop diversity. IPGRI/ IDRC/Lewis Publishers, Boca Raton, pp 3–26

    Google Scholar 

  • Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Bailey E, Grando S, Tutwiler R (1997) Decentralized, participatory plant breeding: a link between formal plant breeding and small farmers. New frontiers in participatory research and gender analysis. In: Proceedings of the Seminar ‘Participatory Research and Gender Analysis for Technology Development’, Cali, Colombia, pp 65–74

  • Cui YX, Xu GW, Magill CW, Schertz KF, Hart GE (1995) RFLP-based assay of Sorghum bicolor (L) Moench genetic diversity. Theor Appl Genet 90:787–796

    Article  CAS  Google Scholar 

  • de Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39:579–587

    PubMed  Google Scholar 

  • Deu M, Gonzalez de Leon D, Glaszmann JC, Degremont I, Chantereau J, Lanaud C, Hamon P (1994) RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88:838–844

    Article  CAS  Google Scholar 

  • Deu M, Hamon P, Chantereau J, Dufour P, D’Hont A, Lanaud C (1995) Mitochondrial DNA diversity in wild and cultivated sorghum. Genome 38:635–645

    Article  PubMed  CAS  Google Scholar 

  • Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180

    PubMed  CAS  Google Scholar 

  • Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163

    Article  Google Scholar 

  • Djè Y, Heuertz M, Lefèbvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Article  Google Scholar 

  • Djè Y, Heuertz M, Ater M, Lefèbvre C, Vekemans X (2004) In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212

    Article  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific and Technical, London, UK

    Google Scholar 

  • Folkertsma RT, Rattunde FH, Chandra S, Soma Raju W, Hash CT (2005) The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409

    Article  PubMed  CAS  Google Scholar 

  • Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs. non-random sampling procedures. B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1972) Simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Hulme M (2001) Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environ Change 11:19–29

    Article  Google Scholar 

  • Kayodé PAP, Linnemann AR, Nout RMJ, Hounhouigan JD, Stomph TJ, Smulders MJM (2006) Diversity and food quality properties of farmers’ varieties of sorghum from Benin. J Sci Food Agric 86:1032–1039

    Article  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:955–965

    Article  PubMed  CAS  Google Scholar 

  • Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezançon G, Pham J-L, Vigouroux Y (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Maxted N, Guarino L, Myer L, Chiwona EA (2002) Towards a methodology for on-farm conservation of plant genetic resources. Genet Resour Crop Evol 49:31–46

    Article  Google Scholar 

  • Menkir A, Goldsbrough P, Ejeta G (1997) RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci 37:564–569

    Article  CAS  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP (R), RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nkongolo KK, Nsapato L (2003) Genetic diversity in Sorghum bicolor (L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Genet Resour Crop Evol 50:149–156

    Article  CAS  Google Scholar 

  • Ollitrault O, Noyer JL, Chantereau J, Glaszmann JC (1997) Structure génétique et dynamique des variétés traditionnelles de sorgho au Burkina Faso. In: Begic A (ed) Gestion des ressources génétiques de plantes en Afrique des savanes. IER-BRG Solagral, Bamako, Mali, pp 231–240

    Google Scholar 

  • Oosterhout SV (1997) What does in situ conservation mean in the life of a small-scale farmer? In: Sperling L, Loevinsohn M (eds) Using diversity: enhancing and maintaining genetic resources on-farm. IRDC, Ottawa, Canada. http://www.idrc.ca/en/ev-85112-201-1-DO_TOPIC.html

  • Parzies HK, Spoor W, Ennos RA (2004) Inferring seed exchange between farmers from population genetic structure of barley landrace Arabi Aswad from Northern Syria. Genet Resour Crop Evol 51:471–478

    Article  CAS  Google Scholar 

  • Perales HR, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proc Natl Acad Sci USA 102:949–954

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Methods for data analysis. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Inc. and CIRAD, Montpellier, pp 31–63

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Reenberg A (2001) Agricultural land use pattern dynamics in the Sudan-Sahel towards an event-driven framework. Land Use Policy 18:309–319

    Article  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Scheuring JF, Konate IM., Toure S (1980) The Malian sorghum collection. Sorghums Newsl 23:33635

    Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920

    Article  PubMed  CAS  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Snowden JD (1936) The cultivated races of sorghum. Adlard, London, UK, pp 1–274

    Google Scholar 

  • Sokal RR, Wartenberg DE (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219–237

    PubMed  CAS  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Tescar RP (2004) Echanges Informels des Semences de sorgho (Sorghum bicolor L. Moench) au Burkina, études de cas: le Centre-Ouest, le Centre-Nord et la Boucle de Mouhoun, DEA Dissertation, INA P-G, Paris, 42 p

  • Teshome A, Fahrig L, Torrance JK, Lambert JD, Arnason TJ, Baum BR (1999) Maintenance of sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers’ selection in Ethiopia. Econ Bot 53:79–88

    Google Scholar 

  • Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    PubMed  CAS  Google Scholar 

  • vom Brocke K, Christinck A, Weltzien E, Presterl T, Geiger HH (2003) Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Sci 43:1680–1689

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wezel A, Boecker R (1998) Fallow plant communities and site characteristics in semi-arid Niger, West Africa. J Arid Environ 40:269–280

    Article  Google Scholar 

  • Zongo JD (1991) Ressources génétiques des sorghos (Sorghum bicolor L. Moench) du Burkina Faso: Evaluation agromorphologique et génétique. PhD Thesis, University of Abidjan, Ivory Coast

  • Zongo JD, Gouyon PH, Sarr A, Sandmeier M (2005) Genetic diversity and phylogenic relations among Sahelian sorghums accessions. Genet Resour Crop Evol 52:869–878

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the different people who took part in the 2003 sampling operation, and particularly Djibo Moussa, Moussa Tidjani and H. Yahaya Bissala. We are also grateful to Claire Billot and the Montpellier Languedoc-Roussillon Genopole platform for technical assistance. This work was supported by Institut Français de la Biodiversité (IFB). We thank Seydou B. Traoré (AGRHYMET) for providing access to 1971–2000 yearly rainfall normals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deu.

Additional information

Communicated by F. Ordon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deu, M., Sagnard, F., Chantereau, J. et al. Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116, 903–913 (2008). https://doi.org/10.1007/s00122-008-0721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0721-7

Keywords

Navigation