Skip to main content
Log in

Phylogenetic inferences in Avena based on analysis of FL intron2 sequences

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahearn KP, Johnson HA, Weigel D, Wagner DR (2001) NFL1, a Nicotiana tabacum LFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42:1130–1139

    Article  PubMed  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723

    Article  Google Scholar 

  • Alicchio R, Aranci L, Conte L (1995) Restriction fragment length polymorphism based phylogenetic analysis of Avena L. Genome 38:1279–1284

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Archambault A, Bruneau A (2001) How useful is the LEAFY gene for the phylogeny reconstruction in the Caesalpinioideae? Am J Bot 88(Suppl):97

    Google Scholar 

  • Archambault A, Bruneau A (2004) Phylogenetic utility of the LEAFY/FLORICAULA gene in the caesalpinioideae (Leguminosae): gene duplication and a novel insertion. Syst Bot 29:609–626

    Article  Google Scholar 

  • Badaeva E, Loskutov I, Shelukhina O, Pukhalsky V (2005) Cytogenetic analysis of diploid Avena L. species containing the as genome. Russ J Genet 41:1428–1433

    Article  CAS  Google Scholar 

  • Bailey CD, Doyle JJ (1999) Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Mol Phylogenet Evol 13:20–30

    Article  PubMed  CAS  Google Scholar 

  • Baker WJ, Hedderson TA, Dransfield J (2000) Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol 14:195–217

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Preston RE, Wessa BL, Wetherwax M (2001) A biosystematic and phylogenetic assessment of sympatric taxa in Blepharizonia (Compositae-Madiinae). Syst Bot 26:184–194

    Google Scholar 

  • Baum BR (1977) Oats: wild and cultivated, a monograph of the genus Avena L. (Poaceae). Minister of supply and services Canada. Agriculture Canada, Ottawa, Ontario

    Google Scholar 

  • Baum BR, Rajhathy T, Sampson DR (1973) An important new diploid Avena species discovered on the Canary Islands. Can J Bot 51:4759–4762

    Google Scholar 

  • Blázquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  Google Scholar 

  • Bomblies K, Doebley JF (2005) Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–1094

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa. Genome 37:607–612

    Article  PubMed  CAS  Google Scholar 

  • Cheng DW, Armstrong KC, Drouin G, McElroy A, Fedak G, Molnar SD (2003) Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena. Genome 46:119–127

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell 63:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Craig IL, Murray BE, Rajhathy T (1974) A. canariensis: mor-phological and electrophoretic polymorphism and relationship to the A. magna-A. murphyi complex and A. sterilis. Can J Genet Cytol 16:677–689

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Drossou A, Katsiokis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54

    Article  PubMed  CAS  Google Scholar 

  • Fominaya A, Vega C, Ferrer E (1988a) Giemsa C-banded karyotypes of Avena species. Genome 30:627–632

    Google Scholar 

  • Fominaya A, Vega C, Ferrer E (1988b) C-banding and nucleolar activity of tetraploid Avena species. Genome 30:633–638

    Google Scholar 

  • Fominaya A, Hueros G, Loarce Y, Ferrer E (1995) Chromosomal distribution of a repeated DNA sequence from C-genome heterochromatin and the identification of a new ribosomal DNA locus in the Avena genus. Genome 38:548–557

    PubMed  CAS  Google Scholar 

  • Frohlich MW, Meyerowitz EM (1997) The search for flower homeotic gene homologs in basal Angiosperms and Gnetales: a potential new source of data on the evolutionary origin of flowers. Int J Plant Sci 158:S131–S142

    Article  CAS  Google Scholar 

  • Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170

    Article  Google Scholar 

  • Fu YB, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117:333–342

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96:14400–14405

    Article  PubMed  CAS  Google Scholar 

  • Grob GBJ, Gravendeel B, Eurlings MCM (2004) Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Mol Phylogenet Evol 30:13–23

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM (1987) Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst 18:23–42

    Article  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  PubMed  CAS  Google Scholar 

  • Hoot SB, Taylor WC (2001) The utility of nuclear ITS, a LEAFY homolog intron, and chloroplast atpB-rbcL spacer region data in phylogenetic analyses and species delimitation in Isoetes. Am Fern J 91:166–177

    Article  Google Scholar 

  • Howarth DG, Baum DA (2005) Gencalogical wbidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodenraceae) in the Hawarran islands. Evolution 59:948–961

    PubMed  CAS  Google Scholar 

  • Irigoyen ML, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A (2001) Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena. Theor Appl Genet 103:1160–1166

    Article  CAS  Google Scholar 

  • Irigoyen ML, Ferrer E, Loarce Y (2006) Cloning and characterization of resistance gene analogs from Avena species. Genome 49:54–63

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Gill B (1996) C-banding variation in the Moroccan oat species Avena agadiriana (2n = 4x = 28). Theor Appl Genet 92:726–732

    Article  Google Scholar 

  • Jellen EN, Phillips RL, Rines HW (1993) C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena. spp.) using Wright’s stain. Genome 36:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Philips RL, Rines HW (1994a) Chromosomal localization and polymorphisms of ribosomal DNA in oat (Avena spp.). Genome 37:23–32

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Gill BS, Cox TS (1994b) Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37:613–618

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Res 2:59–64

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Domier LL, Kolb FL, Brown CM (1999) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415

    Article  Google Scholar 

  • Katsiotis A, Schmidt T, Heslop-Harrison JS (1996) Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39:410–417

    Article  PubMed  CAS  Google Scholar 

  • Katsiotis A, Loukas M, Heslop-Harrison JS (1997) The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences. Ann Bot 79:103–109

    Article  CAS  Google Scholar 

  • Kelly AJ, Bonnlander MB, Meeks-Wagner DR (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7:225–234

    Article  PubMed  CAS  Google Scholar 

  • Kianian SF, Egli MA, Phillips RL, Rines HW, Somers DA, Gengenbach BG, Wesenberg DM, Stuthman DD, Fulcher RG (1999) Association of a major groat oil content QTL and an acetyl-COA carboxylase gene in oat. Theor Appl Genet 98:884–894

    Article  CAS  Google Scholar 

  • Kihara H, Nishiyama I (1932) The genetics and cytology of certain cereals III. Different compatibility in reciprocal crosses of Avena, with reference to tetraploid hybrids between hexaploid and diploid species. Jpn J Bot 6:245–305

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ladizinsky G (1973) Genetic control of bivalent pairing in the Avena strigosa polyploid complex. Chromosoma 42:105–110

    Article  PubMed  CAS  Google Scholar 

  • Ladizinsky G (1974) Genome relationships in the diploid oats. Chromosoma 47:109–117

    Article  Google Scholar 

  • Ladizinsky G (1988) Biological species and wild genetic resources in Avena. In: Mattsson B, Lyhagen R, Svalof AB (eds) Proceedings of the 3rd international oat conference, Lund, Sweden, 4–8 July, 1988

  • Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45:263–269

    Article  Google Scholar 

  • Ladizinsky G (1999) Cytogenetic relationships between Avena insularis (2n = 28) and both A. strigosa (2n = 14) and A. murphyi (2n = 28). Genet Resour Crop Evol 46:501–504

    Article  Google Scholar 

  • Ladizinsky G, Fainstein R (1977) Intergression between the cultivated hexaploid oat A. sativa and the tetraploid wild A. magna and A. murphyi. Can J Genet Cytol 19:59–60

    Google Scholar 

  • Ladizinsky G, Zohary D (1968) Genetic relationships between the diploids and tetraploids in the series Eubarbatae of Avena. Can J Genet Cytol 10:68–81

    Google Scholar 

  • Ladizinsky G, Zohary D (1971) Notes on species delimitation, species relationships and polyploidy in Avena. Euphytica 20:380–395

    Article  Google Scholar 

  • Leggett JM (1984a) Morphology and metaphase chromosome pairing in three Avena hybrids. Can J Genet Cytol 26:641–645

    Google Scholar 

  • Leggett JM (1984b) Cytoplasmic substitutions involving six Avena species. Can J Genet Cytol 26:698–700

    Google Scholar 

  • Leggett JM (1987) Interspecific hybrids involving the recently described taxon Avena atlantica. Genome 29:361–364

    Google Scholar 

  • Leggett JM (1989) Interspecific diploid hybrids in Avena. Genome 32:346–348

    Google Scholar 

  • Leggett JM (1996) Using and conserving Avena genetic resources. In: Scoles GJ, Rossnagel BG (eds) Barley chromosome coordinators’ workshop at the V international oat conference & VII international barley genetics symposium, Saskatoon, Saskatchewan, Canada, 31 July 1996. University of Saskatchewan, pp 128–132

  • Leggett JM (1998) Chromosome and genomic relationships between the diploid species Avena strigosa, A. eriantha and the tetraploid A. maroccana. Heredity 80:361–363

    Article  Google Scholar 

  • Leggett JM, Markhand GS (1995) The genomic structure of Avena revealed by GISH. In: Brandham PE, Bennett MD (eds) Kew chromosome conference IV. HMSO, UK, pp 133–139

    Google Scholar 

  • Leggett JM, Thomas H (1995) Oat evolution and cytogenetics. In: Welch RW (ed) The oat crop: production and utilization. Chapman and Hall, London, UK

    Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000a) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268

    Article  CAS  Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000b) Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. Crop Sci 40:1755–1763

    Article  CAS  Google Scholar 

  • Li WT, Peng YY, Wei YM, Baum BR, Zheng YL (2009) Relationship among Avena species as revealed by consensus chloroplast simple sequence repeat (ccSSR) markers. Genet Resour Crop Evol 56:465–480

    Article  CAS  Google Scholar 

  • Linares C, Vega C, Ferrer E, Fominaya A (1992) Identification of C-banded chromosomes in meiosis and the analysis of nucleolar activity in Avena byzantina C. Koch cv 'Kanota'. Theor Appl Genet 83:650–654

    Article  Google Scholar 

  • Linares C, Gónzalez J, Ferrer E, Fominaya A (1996) The use of double FISH to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S–5.8S–26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome 39:535–542

    Article  PubMed  CAS  Google Scholar 

  • Linares C, Ferrer E, Fominaya A (1998) Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. Proc Natl Acad Sci USA 95:12450–12455

    Article  PubMed  CAS  Google Scholar 

  • Linares C, Irigoyen ML, Fominaya A (2000) Identification of C-genome chromosomes involved in intergenomic translocations in Avena sativa L., using cloned repetitive DNA sequences. Theor Appl Genet 100:353–360

    Article  CAS  Google Scholar 

  • Liston A, Robinson WA, Oliphant JM, Alvarez-Buylla ER (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst Bot 21:109–120

    Article  Google Scholar 

  • Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu BR (2006) Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol 170:411–420

    Article  PubMed  CAS  Google Scholar 

  • Loskutov IG (2001) Interspecific crosses in the genus Avena L. Rus J Genet 37:467–475

    Article  CAS  Google Scholar 

  • Loskutov IG (2008) On evolutionary pathways of Avena species. Genet Resour Crop Evol 55:211–220

    Article  Google Scholar 

  • Loskutov IG, Perchuk IN (2000) Evaluation of interspecific diversity in Avena genus by RAPD analysis. Oat Newsletter 46 (http://wheat.pw.usda.gov/ggpages/oatnewsletter/v46/)

  • Marshall HG, Myers WM (1961) A cytogenetic study of certain interspecific Avena hybrids and the inheritance of resistance in diploid and tetraploid varieties to races of crown rust. Crop Sci 1:29–34

    Article  Google Scholar 

  • Martin AP, Burg TM (2002) Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. Syst Biol 51:570–587

    Article  PubMed  Google Scholar 

  • Mason-Gamer RJ (2001) Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst Bot 26:757–768

    Google Scholar 

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    PubMed  CAS  Google Scholar 

  • Murai K, Tsunewaki K (1987) Chloroplast genome evolution in the genus Avena. Genetics 116:613–621

    PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW II (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Embnew News 4:1–4

    Google Scholar 

  • Nikoloudakis N, Katsiotis A (2008) The origin of the C-genome and cytoplasm of Avena polyploids. Theor Appl Genet 117:273–281

    Article  PubMed  CAS  Google Scholar 

  • Nikoloudakis N, Skaracis G, Katsiotis A (2008) Evolutionary insights inferred by molecular analysis of the ITS1–5.8S-ITS2 and IGS Avena sp. sequences. Mol Phylogenet Evol 46:102–115

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama I (1984) Interspecific cross-incompatibility system in the genus Avena. Bot Mag 97:219–231

    Article  Google Scholar 

  • Nishiyama I, Yabuno T (1975) Meiotic chromosome pairing in two interspecific hybrids and a criticism of the evolutionary relationship of diploid Avena. Jpn J Genet 50:443–451

    Article  Google Scholar 

  • Nocelli E, Giovannini T, Bioni M, Alicchio R (1999) RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42:950–959

    Article  PubMed  CAS  Google Scholar 

  • O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD et al (1995) A molecular linkage map of cultivated oat. Genome 38:368–380

    Article  PubMed  Google Scholar 

  • Oh S-H, Potter D (2003) Phylogenetic utility of the second intron of LEAFY in Neillia Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Mol Phylogenet Evol 29:203–215

    Article  PubMed  CAS  Google Scholar 

  • Oh S-H, Potter D (2005) Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. Am J Bot 92:179–192

    Article  CAS  Google Scholar 

  • Oinuma T (1952) Karyomorphology of cereals. Biol J Okayama Univ 1:12–71

    Google Scholar 

  • Peng YY, Wei YM, Baum BR, Zheng YL (2008) Molecular diversity of 5S rDNA gene and genomic relationships in genus Avena (Poaceae: Aveneae). Genome 51:137–154

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Potter D, Luby JJ, Harrison RE (2000) Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Syst Bot 25:337–348

    Article  Google Scholar 

  • Rajhathy T (1966) Evidence and an hypothesis for the origin of the C genome of hexaploid Avena. Can J Genet Cytol 8:774–779

    Google Scholar 

  • Rajhathy T (1991) The chromosomes of Avena. In: Gupta PK, Tsuchiya T (eds) Chromosome engineering in plants: genetics, breeding, evolution. Elsevier Science Publishers, The Netherlands, pp 447–465

    Google Scholar 

  • Rajhathy T, Baum BR (1972) Avena damascena: a new diploid oat species. Can J Genet Cytol 14:645–654

    Google Scholar 

  • Rajhathy T, Morrison JW (1959) Chromosome morphology in the genus Avena. Can J Bot 37:372–377

    Article  Google Scholar 

  • Rajhathy T, Morrison JW (1960) Genome homology in the genus Avena. Can J Genet Cytol 2:278–285

    Google Scholar 

  • Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Misc Publ Genet Soc Can, Ottawa

  • Rines HW, Gengenbach BG, Boylan KL, Storey KK (1988) Mitochondrial DNA diversity in oat cultivars and species. Crop Sci 28:171–176

    Article  Google Scholar 

  • Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341

    Google Scholar 

  • Rodionov AV, Tyupa NB, Kim ES, Machs EM, Loskutov IG (2005) Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence. Russ J Genet 41:518–528

    Article  CAS  Google Scholar 

  • Ronald PS, Penner GA, Brown PD, Brule-Babel A (1997) Identification of RAPD markers for percent hull in oat. Genome 40:873–878

    Article  PubMed  CAS  Google Scholar 

  • Sadasivaiah RS, Rajhathy T (1968) Genome relationships in tetraploid Avena. Can J Genet Cytol 10:655–669

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sánchez de la Hoz P, Fominaya A (1989) Studies of isozymes in oat species. Theor Appl Genet 77:735–741

    Google Scholar 

  • Schlüter PM, Gudrun K, Stuessy TF, Paulus HF (2007) A screen of low-copy nuclear genes rebeals the LFY gene as phylogenetically informative in closely related species of orchids (Ophrys). Taxon 56:493–504

    Google Scholar 

  • Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    Article  PubMed  Google Scholar 

  • Shelukhina OYU, Badaeva ED, Loskutov IG, Pukhal’sky VA (2007) A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: A. insularis, A. maroccana and A. murphyi. Russ J Genet 43:613–626

    Article  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K (2006) WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst 81:13–20

    Article  PubMed  CAS  Google Scholar 

  • Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston, pp 1–42

    Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Southerton SG, Strauss SH, Oliver MR, Hercourt RL, Decroocq V, Zhu X, Llewellyn DJ, Dennis ES (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37:897–910

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Tank DC, Sang T (2001) Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae). Mol Phylogenet Evol 19:421–429

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2000) Plant breedings: FLO-like meristem identity genes: from basic science to crop plant design. In: Progress in botany, Springer, Berlin, 61:167–183

  • Thomas H (1992) Cytogenetics of Avena. In: Marshall HG, Sorrells ME (eds) Oat science and technology, monograph 33, agronomy series. ASA and CSSA, Madison, Wisconsin, pp 473–508

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Cao Q, Nobuhiro K, Soejima J, Masuda T (2002) Apple has two orthologs of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet 29:19–39

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Whitcher IN, Wen J (2001) Phylogeny and biogeography of Corylus (Betulaceae): inferences from ITS sequences. Syst Bot 26:283–298

    Google Scholar 

  • Wilson CA (2003) Phylogenetic relationships in Iris series Californicae based on ITS sequences of nuclear ribosomal DNA. Syst Bot 28:39–46

    Google Scholar 

  • Yang Q, Hanson L, Bennett MD, Leitch IJ (1999) Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 42:512–518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Agriculture and Agri-Food Canada (AAFC), the National Small Grains Collection, ARS, USDA, and Dr. Eric N. Jellen, Brigham Young University, Provo, Utah, USA, for kindly providing the Avena material. We are very grateful to Mrs Charlene Wight, Eastern Cereal and Oilseed Research Centre, for her most valuable help and comments on the manuscript. We also wish to thank two anonymous reviewers for helpful comments that improved the manuscript. This work was supported by the Earmarked fund for Modern Agro-industry Technology Research System (NYCYTX-14). Yuan-Ying Peng was supported by the Excellent Doctoral Dissertation Fund of Sichuan Agricultural University (YBPY0802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernard R. Baum or You-Liang Zheng.

Additional information

Communicated by P. Heslop-Harrison.

Y.-Y. Peng and Y.-M. Wei contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, YY., Wei, YM., Baum, B.R. et al. Phylogenetic inferences in Avena based on analysis of FL intron2 sequences. Theor Appl Genet 121, 985–1000 (2010). https://doi.org/10.1007/s00122-010-1367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1367-9

Keywords

Navigation