Skip to main content
Log in

Relationships among Avena species as revealed by consensus chloroplast simple sequence repeat (ccSSR) markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Consensus chloroplast simple sequence repeat (ccSSR) makers were used to assess the genetic variation and genetic relationships of 80 accessions from 25 taxa of the genus Avena. Fifteen out of 16 ccSSR markers (93.75%) were polymorphic. A total of 51 alleles were detected at the 16 ccSSR loci. The number of alleles per locus ranged from 1 to 6, with an average of 3.2 alleles. Among these ccSSR loci, the highest polymorphism information content (PIC) value was 0.754, while the lowest PIC value was 0. The mean genetic similarity index among the 80 Avena accessions was 0.545, ranging from 0.188 to 1.000. To assess the usefulness of ccSSRs in separating and distinguishing between haplome (genome) groups, we used ordination by canonical discriminant analysis and classificatory discriminant analysis. Although discriminant analysis separated the haplome groups unequivocally, it was up to 69% predictive of correctly classifying an individual plant whose haplome(s) is unknown in the case where it belonged to the A haplome group, 75% where it belonged in the AC group, and almost 80% where it belonged in the ACD group. The analysis of genetic similarity showed that diploid species with the A haplome were more diverse than other species, and that the species with the As haplome were more divergent than other diploid species with the A haplome. Among the species with the C haplome, A. clauda was more diverse than A. eriantha and A. ventricosa. In the cluster analysis, we found that the Avena accessions with the same genomes and/or belonging to the same species had the tendency to cluster together. As for the maternal donors of polyploid species based on this maternally inherited marker, A. strigosa served as the maternal donor of some Avena polyploidy species such as A. sativa, A. sterilis and A. occidentalis from Morocco. A. fatua is genetically distinct from other hexaploid Avena species, and A. damascena might be the A genome donor of A. fatua. Avena lusitanica served as the maternal parents during the polyploid formation of the AACC tetraploids and some AACCDD hexaploids. These results suggested that different diploid species were the putative A haplome donors of the tetraploid and hexaploid species. The C genome species A. eriantha and A. ventricosa are largely differentiated from the Avena species containing the A, or B, or D haplomes, whereas A. clauda from different accessions were found to be scattered within different groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alicchio R, Aranci L, Conte L (1995) Restriction fragment length polymorphism based phylogenetic analysis of Avena L. Genome 38:1279–1284

    PubMed  Google Scholar 

  • Anderson JC, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186. doi:10.1139/g93-024

    Article  PubMed  CAS  Google Scholar 

  • Baum BR (1977) Oats: wild and cultivated. a monograph of the genus Avena L. (Poaceae). Minister of Supply and Services Canada, Ottawa, Canada, 463 pp

    Google Scholar 

  • Baum BR, Fedak G (1985) Avena atlantica, a new diploid species of the oat genus from Morocco. Can J Bot 63:1057–1060. doi:10.1139/b85-144

    Article  Google Scholar 

  • Baum BR, Johnson DA (1994) The molecular diversity of the 5S rRNA gene in barley (H. vulgare). Genome 37:992–998. doi:10.1139/g94-140

    Article  PubMed  CAS  Google Scholar 

  • Baum BR, Johnson DA (1996) The 5S rRNA gene units in ancestral two-rowed barley (Hordeum spontaneum C. Koch) and bulbous barley (H. bulbosum L.): sequence analysis and phylogenetic relationships with the 5S rDNA units in cultivated barley (H. vulgare L.). Genome 39:140–149. doi:10.1139/g96-019

    Article  PubMed  CAS  Google Scholar 

  • Baum BR, Johnson DA (1998) The 5S rRNA gene units in sea barley (Hordeum marinum Hudson sensu lato): sequence variation among repeat units and relationship to the X haplome in barley (Hordeum). Genome 41:652–661. doi:10.1139/gen-41-5-652

    Article  PubMed  CAS  Google Scholar 

  • Baum BR, Johnson DA (1999) The 5S rRNA gene units in wall barley (Hordeum murinum L. sensu lato): sequence variation among repeat units and relationship to the Y haplome in the genus Hordeum (Poaceae: Triticeae). Genome 42:854–866. doi:10.1139/gen-42-5-854

    Article  PubMed  CAS  Google Scholar 

  • Baum BR, Johnson DA (2000) The 5S rRNA gene units in the native New World annual Hordeum species (Triticeae: Poaceae). Can J Bot 78:1590–1602. doi:10.1139/cjb-78-12-1590

    Article  CAS  Google Scholar 

  • Baum BR, Johnson DA (2002) A comparison of the 5S rDNA diversity in the Hordeum brachyantherum-californicum complex with those of the eastern Asiatic Hordeum roshevitzii and the South Asiatic Hordeum cordobense (Triticeae: Poaceae). Can J Bot 80:752–762. doi:10.1139/b02-057

    Article  CAS  Google Scholar 

  • Baum BR, Johnson DA, Bailey LG (2001) Defining orthologous groups among multicopy genes prior to inferring phylogeny, with special emphasis on the Triticeae (Poaceae). Hereditas 135:123–138. doi:10.1111/j.1601-5223.2001.00123.x

    Article  PubMed  CAS  Google Scholar 

  • Buchannan FC, Adams LJ, Littlejohn RP, Maddox JF, Crawford AM (1994) Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22:397–403. doi:10.1006/geno.1994.1401

    Article  Google Scholar 

  • Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa L. Genome 37:607–612. doi:10.1139/g94-086

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Cho YG, McCouch SR (2002) Microsatellites in Oryza and other plant species. Mol Genet Genomics 268:331–343. doi:10.1007/s00438-002-0739-5

    Article  PubMed  CAS  Google Scholar 

  • Cheng YP, Hwang SY, Lin TP (2005) Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Mol Ecol 14:2075–2085. doi:10.1111/j.1365-294X.2005.02567.x

    Article  PubMed  CAS  Google Scholar 

  • Chung SM, Staub JE (2003) The development and evaluation of consensus chloroplast SSRs for chloroplast genetic analysis. Theor Appl Genet 107:757–767. doi:10.1007/s00122-003-1311-3

    Article  PubMed  CAS  Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton RR (1994) Rates and pattern of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801. doi:10.1073/pnas.91.15.6795

    Article  PubMed  CAS  Google Scholar 

  • Cochrane WG, Hopkins CE (1961) Some classification problems with multivariate qualitative data. Biometrics 17:10–32. doi:10.2307/2527493

    Article  Google Scholar 

  • Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54. doi:10.1007/s00122-004-1615-y

    Article  PubMed  CAS  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256. doi:10.1007/BF00220937

    Article  CAS  Google Scholar 

  • Ennos RA, Sinclair WT, Hu XS, Langdon A (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution of plant populations. Taylor & Francis Ltd., London, pp 1–19

    Google Scholar 

  • Fabijanski S, Fedak G, Armstrong K, Altosaar I (1990) A repeated sequence probe for the C genome in Avena (oat). Theor Appl Genet 79:1–7. doi:10.1007/BF00223778

    Article  CAS  Google Scholar 

  • Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet 96:187–195. doi:10.1007/s001220050726

    Article  CAS  Google Scholar 

  • Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29. doi:10.1007/s001220200002

    Article  PubMed  CAS  Google Scholar 

  • Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Bruke JI, Salamin N et al (2006) Plastid genome characterization in Brassica and Brassicaceae using a new set of nine SSRs. Theor Appl Genet 113:1221–1231. doi:10.1007/s00122-006-0377-0

    Article  PubMed  CAS  Google Scholar 

  • Fominaya A, Vega C, Ferrer E (1988) C-banding and nucleolar activity of tetraploid Avena species. Genome 30:633–638

    Google Scholar 

  • Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12:245–261. doi:10.1023/A:1026346121217

    Article  CAS  Google Scholar 

  • Gilbert ES (1968) On discrimination using qualitative variables. J Am Stat Assoc 63:1399–1412. doi:10.2307/2285893

    Article  Google Scholar 

  • Gupta PK, Gibaud M, Altosaar I (1992) Two molecular probes characterizing the A and C genomes in the genus Avena (oats). Genome 35:916–920

    CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwarda KJ, Isaac P, Korzun V, Röder MS et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422. doi:10.1007/s00122-002-0865-9

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Börner AB, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707. doi:10.1007/s00122-002-0959-4

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen ML, Linares C, Ferrer E, Fominaya A (2002) Fluorescence in situ hybridization mapping of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA sequences. Genome 45:1230–1237. doi:10.1139/g02-076

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Phillips RL, Rines HW (1993) C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena spp.) using Wright’s stain. Genome 36:1129–1137. doi:10.1139/g93-151

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Gill BS, Cox TS (1994) Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome 37:613–618. doi:10.1139/g94-087

    Article  PubMed  CAS  Google Scholar 

  • Krzanowski WJ (1975) Discrimination and classification using both binary and continuous variables. J Am Stat Assoc 70:782–790. doi:10.2307/2285437

    Article  Google Scholar 

  • Kshirsagar AM (1972) Multivariate analysis. Marcel Dekker, New York

    Google Scholar 

  • Lachenbruch PA, Mickey MA (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–10. doi:10.2307/1266219

    Article  Google Scholar 

  • Ladizinsky G (1973) The cytogenetic position of Avena prostrata among the diploid oats. Can J Genet Cytol 15:443–450

    Google Scholar 

  • Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45:263–269. doi:10.1023/A:1008657530466

    Article  Google Scholar 

  • Ladizinsky G, Fainstein R (1977) Intergression between the cultivated hexaploid oat A. sativa and the tetraploid wild A. magna and A. murphyi. Can J Genet Cytol 19:59–60

    Google Scholar 

  • Ladizinsky G, Zohary D (1971) Notes on species delimitation, species relationships and polyploidy in Avena. Euphytica 20:380–395. doi:10.1007/BF00035663

    Article  Google Scholar 

  • Leggett JM (1984) Morphology and metaphase chromosome pairing in three Avena hybrids. Can J Genet Cytol 26:641–645

    Google Scholar 

  • Leggett JM (1992) Oat science and technology. Agronomy monograph, no. 33. American Society of Agronomy and Crop Science Society of America, St. Louis, pp 29–52

  • Leggett JM, Markhand GS (1995a) The genomic structure of Avena revealed by GISH. In: Brandham P, Bennett MD (eds) Kew chromosome conference IV, Royal Botanic Gardens, Kew UK, pp 133–139

  • Leggett JM, Markhand GS (1995b) The genomic identification of some monosomics of Avena sativa L. cv. Sun II using genomic in situ hybridization. Genome 38:747–751. doi:10.1139/g95-094

    Article  PubMed  CAS  Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268. doi:10.1007/s001220051605

    Article  CAS  Google Scholar 

  • Linares C, Vega C, Ferrer E, Fominaya A (1992) Identification of C-banded chromosomes in meiosis and the analysis of nucleolar activity in Avena byzantina C. Koch cv. ‘Kanota’. Theor Appl Genet 83:650–654. doi:10.1007/BF00226911

    Article  Google Scholar 

  • Linares C, Gonzalez J, Ferrer E, Fominaya A (1996) The use of double FISH to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome 39:535–542. doi:10.1139/g96-068

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS (2002) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048. doi:10.1007/s00122-001-0831-y

    Article  PubMed  CAS  Google Scholar 

  • Loudet O, Chaillou S, Camilleri C, Bouchez D, DanielVedele F (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104:1173–1184. doi:10.1007/s00122-001-0825-9

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Wanous MK, Houchins K, Rodriguezmila MA, Goicoechea PG, Wang Z et al (2001) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523. doi:10.1007/s001220051676

    Article  CAS  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellite in Zea-variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450. doi:10.1007/s001220100694

    Article  PubMed  CAS  Google Scholar 

  • McCauley DE (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: implications for studies of gene flow in plants. Proc Natl Acad Sci USA 91:8127–8131. doi:10.1073/pnas.91.17.8127

    Article  PubMed  CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404. doi:10.2307/2446172

    Article  Google Scholar 

  • Murai K, Tsunewaki K (1986) Phylogenetic relationship between Avena species revealed by the restriction endonuclease analysis of chloroplast and mitochondrial DNAs. In: Lawes DA, Thomas H (eds) Proceedings of the 2nd international oats conference. Martinus Nijhoff, Dordrecht, pp 34–38

  • Murai K, Tsunewaki K (1987) Chloroplast genome evolution in the genus Avena. Genetics 116:613–621

    PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi:10.1073/pnas.70.12.3321

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. doi:10.1073/pnas.76.10.5269

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama I (1984) Climate influence on pollen formation and fertilization. In: Tsunoda S, Takahashi N (eds) Biology of rice. Elsevier, Amsterdam, pp 153–171

    Google Scholar 

  • Nishiyama I, Yabuno T (1975) Meiotic chromosome pairing in two interspecific hybrids and a criticism of the evolutionary relationship of diploid Avena Jap. J Genet 50:443–451

    Google Scholar 

  • Nocelli E, Giovannini T, Bioni M, Alicchio R (1999) RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42:950–959. doi:10.1139/gen-42-5-950

    Article  PubMed  CAS  Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1205–1224. doi:10.2307/2445483

    Article  CAS  Google Scholar 

  • Panda S, Martin JP, Aguinagalde I (2003) Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis. Theor Appl Genet 106:1122–1128

    PubMed  CAS  Google Scholar 

  • Peng YY, Wei YM, Baum BR, Zheng YL (2008) Molecular diversity of 5S rDNA gene and genomic relationships in genus Avena (Poaceae: Aveneae). Genome 51:137–154. doi:10.1139/G07-111

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 7:215–222

    Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147. doi:10.1016/S0169-5347(00)02097-8

    Article  PubMed  Google Scholar 

  • Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Misc Publ Genet Soc Can 2:1–90

    Google Scholar 

  • Rajora OP, Dancik BP (1992) Chloroplast DNA inheritance in Populus. Theor Appl Genet 84:280–285

    Google Scholar 

  • Rao CR (1952) Advanced statistical methods in biometric research. Wiley, New York

    Google Scholar 

  • Rendell S, Ennos RA (2003) Chloroplast DNA diversity of the dioecious European tree Ilex aquifolium L. (English holly). Mol Ecol 12:2681–2688. doi:10.1046/j.1365-294X.2003.01934.x

    Article  PubMed  CAS  Google Scholar 

  • Rines HW, Gengenbach BG, Boylan KL (1988) Mitochondrial DNA diversity in oat cultivars and species. Crop Sci 28:171–176

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodionov AV, Tyupa NB, Kim ES, Machs EM, Loskutov IG (2005) Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence. Russ J Genet 41(5):518–528. doi:10.1007/s11177-005-0120-y

    Article  CAS  Google Scholar 

  • Rohlf FJ (2002) NTSYS-pc. Numerical taxonomy and multivariate analysis system, Version 2.1. Exeter Software, New York

    Google Scholar 

  • Roselyne L, Mathieu TD, Henri M, Aurélie S, Emilie I, Céline B et al (2005) Phylogeographical variation of chloroplast DNA in Cork Oak (Quercus suber). Ann Bot (Lond) 96:853–861. doi:10.1093/aob/mci237

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanguinelti CJ, Neto ED, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:915–919

    Google Scholar 

  • SAS Institute Inc. (1989) SAS/STAT User’s Guide, Version 6, vol 2, 4th edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Scholz H (1991) The systematics of Avena sterilis and A. fatua (Gramineae): a critical study. Willdenovia 20:103–112

    Google Scholar 

  • Shang HY, Baum BR, Wei YM, Zheng YL (2007) The 5S rRNA gene diversity in the genus Secale and determination of its closest haplomes. Genet Resour Crop Evol 54:793–806. doi:10.1007/s10722-006-9149-6

    Article  CAS  Google Scholar 

  • Shelukhina OY, Badaeva ED, Loskutov IG, Pukhal’sky VA (2007) A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: A. insularis, A. maroccana and A. murphyi. Russ J Genet 43:613–626. doi:10.1134/S102279540706004X

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Milligan BG (1992) Intraspecific cpDNA variation: systematic and phylogenetic implications. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 117–150

    Google Scholar 

  • Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C et al (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949. doi:10.1007/s001220050975

    Article  CAS  Google Scholar 

  • Thomas H (1992) Cytogenetics of Avena. In: Marshall HG, Sorrells ME (eds) Oat science and technology. American Society of Agronomy Inc. and Crop Science Society of America, Inc, Madison, pp 473–507

  • Walter R, Epperson BK (2001) Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Mol Ecol 10:103–111. doi:10.1046/j.1365-294X.2001.01177.x

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Hanson L, Bennett MD, Leitch IJ (1999) Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 42:512–518. doi:10.1139/gen-42-3-512

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) PopGene Version 1.31. Microsoft Window-based freeware for population genetic analysis. Quick user guide. http://www.ualberta.ca/~fyeh/

Download references

Acknowledgements

We thank the Agriculture & Agri-Food Canada (AAFC) and the National Small Grains Collection, ARS, USDA, for kindly providing the Avena material. We are grateful to Mrs. Charlene Wight, Agriculture & Agri-Food Canada, Ottawa, Canada, for many mostly editorial changes that have improved the manuscript. This work was supported by the National High Technology Research and Development Program of China (863 program 2006AA10Z179 and 2006AA10Z1F8) and the FANEDD project (200357 and 200458) of the Ministry of Education, China. Dr. Y.-M. Wei was supported by the Program for New Century Excellent Talents in Universities of China (NCET-05-0814).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ming Wei or You-Liang Zheng.

Additional information

Wei-Tao Li and Yuan-Ying Peng have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WT., Peng, YY., Wei, YM. et al. Relationships among Avena species as revealed by consensus chloroplast simple sequence repeat (ccSSR) markers. Genet Resour Crop Evol 56, 465–480 (2009). https://doi.org/10.1007/s10722-008-9379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9379-x

Keywords

Navigation