Skip to main content
Log in

Identification of QTLs for relative root traits associated with phosphorus efficiency in two culture systems in Brassica napus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Modifications of root system morphology and architecture are considered important strategies of plant tolerance to phosphorus (P) deficiency. However, the effect of culture system on the responses of root traits to P deficiency is not well documented. In this study, the responses of root traits to P deficiency were recorded in a Brassica napus double haploid (DH) population consisting of 182 lines derived from a cross between cultivar ‘Tapidor’ and ‘Ningyou 7’ using an ‘agar’ system and a ‘pouch and wick’ system. Under P deficient conditions, more DH lines had greater total root length, primary root length, total lateral root length, mean lateral root length and less lateral root density in the ‘pouch and wick’ system than the ‘agar’ system. Ten and two quantitative trait loci (QTLs) were detected for the relative root traits in the ‘agar’ system and the ‘pouch and wick’ system, respectively. The QTL for the same trait in the ‘agar’ system did not overlap with that in the ‘pouch and wick’ system. Two and one QTL clusters identified in the ‘agar’ system were located on chromosome A09 (Cluster1 and Cluster2) and C04 (Cluster3), respectively. RLRN_A04b, RSDW_A09a and Cluster1 were found to affect the seed yield and/or yield-related traits in two field trials. Overall, this study demonstrated a significant impact of different culture systems on the responses of root traits to P deficiency and on the detection of QTLs for the relative root traits, and identified three major QTLs that could be employed for marker assisted selection of P efficient cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DH:

Double haploid

LP:

A low phosphorus supply

LRD:

Lateral root density

LRL:

Total lateral root length

LRN:

Lateral root number

MLRL:

Mean lateral root length

OP:

An optimal phosphorus supply

P:

Phosphorus

Pi:

Inorganic phosphate

PRL:

Primary root length

QTL:

Quantitative trait loci

RLRD:

Relative lateral root density

RLRL:

Relative total lateral root length

RLRN:

Relative lateral root number

RMLRL:

Relative mean lateral root length

RPRL:

Relative primary root length

RRFW:

Relative root fresh weight

RSDW:

Relative shoot dry weight

RTDW:

Relative total dry weight

RTRL:

Relative total root length

TRL:

Total root length

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–42

    Google Scholar 

  • Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Bayuelo-Jiménez JS, Gallardo-Valdéz M, Pérez-Decelis VA, Magdaleno-Armas L, Ochoa I, Lynch JP (2011) Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Res 121:350–362

    Article  Google Scholar 

  • Boccalandro HE, De Simone SN, Bergmann-Honsberger A, Schepens I, Fankhauser C, Casal JJ (2008) Phytochrome kinase substrate1 regulates root phototropism and gravitropism. Plant Physiol 146:108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ 26:1839–1850

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA (2015) Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ 38:1213–1232

    Article  CAS  PubMed  Google Scholar 

  • Duan HY, Shi L, Ye XS, Wang YH, Xu FS (2009) Identification of phosphorous efficient germplasm in oilseed rape. J Plant Nutr 32:1148–1163

    Article  CAS  Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838

    Article  CAS  PubMed  Google Scholar 

  • Fita A, Nuez F, Picó B (2011) Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica 181:323–339

    Article  CAS  Google Scholar 

  • Galen C, Huddle J, Liscum E (2004) An experimental test of the adaptive evolution of phototropism: blue-light receptors controlling phototropism in Arabidopsis thaliana. Evolution 58:515–523

    Article  CAS  PubMed  Google Scholar 

  • Galen C, Rabenold JJ, Liscum E (2006) Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol 173:91–99

    Article  CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Ghandilyan A, Ilk N, Hanhart C, Mbengue M, Barboza L, Schat H, Koornneef M, El-Lithy M, Vreugdenhil D, Reymond M, Aarts MG (2009) A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J Exp Bot 60:1409–1425

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haling RE, Brown LK, Bengough AG, Young IM, Hallett PD, White PJ, George TS (2013) Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64:3711–3721

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Chapter 6: Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 135–189

    Chapter  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hubert B, Funke GL (1937) The phototropism of terrestrial roots. Biol Jaarboek 4:286–315

    Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, White PJ, Whalley WR, Shen J, Shi L (2017) Shaping an optimal soil by root–soil interaction. Trends Plant Sci 22:823–829

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2012) Root phototropism: from dogma to the mechanism of blue light perception. Planta 235:443–452

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Finnegan PM, Laliberté E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Phosphorus nutrition of proteaceae in severely phosphorus-impoverised soils: are there lessons to be learned for future crops? Plant Physiol 156:1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288

    Article  CAS  PubMed  Google Scholar 

  • Lapis-Gaza HR, Jost R, Finnegan PM (2014) Arabidopsis phosphate transporter1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biol 14:334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21:59–66

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970

    Article  CAS  PubMed  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci 112:E5123–E5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  PubMed  CAS  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Pérez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis: identification of BIG as a mediator of auxin pericycle cell activation. Plant Physiol 137:681–691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1005760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J 3:265–279

    Article  Google Scholar 

  • Metzner R, Eggert A, van Dusschoten D, Pflugfelder D, Gerth S, Schurr U, Uhlmann N, Jahnke S (2015) Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods 11:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming F, Zheng X, Mi G, He P, Zhu L, Zhang F (2000) Identification of quantitative trait loci affecting tolerance to low phosphorus in rice (Oryza Sativa L.). Chin Sci Bull 45:520–525

    Article  Google Scholar 

  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, Jiménez-Domínguez G, Chávez-Calvillo G, Rellán-Álvarez R, Herrera-Estrella L (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci 114:E3563–E3572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller J, Toev T, Heisters M, Teller J, Moore KL, Hause G, Dinesh DC, Bürstenbinder K, Abel S (2015) Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Dev Cell 33:216–230

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler J, Wissuwa M (2016) Superior root hair formation confers root efficiency in some, but not all, rice genotypes upon P deficiency. Front Plant Sci 7:1935

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369

    Article  CAS  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    Article  CAS  PubMed  Google Scholar 

  • Péreztorres CA, Lópezbucio J, Cruzramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant, Cell Environ 29:115–125

    Article  CAS  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Shi TX, Wang SS, Shi L, Meng JL, Xu FS (2010) Effects of different nitrogen and phosphorus levels on seed yield and quality parameters of double high and double low Brassica napus. Plant Nutr Fert Sci 16:959–964

    CAS  Google Scholar 

  • Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013a) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112:381–389

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013b) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS ONE 8:e54559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Navas J, Moreno-Risueno MA, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina JM, Baigorri R, Gallego FJ, del Pozo JC (2015) D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J 84:244–255

    Article  CAS  PubMed  Google Scholar 

  • Silva-Navas J, Moreno-Risueno MA, Manzano C, Téllez-Robledo B, Navarro-Neila S, Carrasco V, Pollmann S, Gallego FJ, del Pozo JC (2016) Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition. Plant Cell 28:1372–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang X, Tong Y, Chen X, Liao H (2012) Bioengineering and management for efficient phosphorus utilization in crops and pastures. Curr Opin Biotechnol 23:866–871

    Article  CAS  PubMed  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    Article  CAS  PubMed  Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC

  • Wang X, Chen Y, Thomas CL, Ding G, Xu P, Shi D, Grandke F, Jin K, Cai H, Xu F, Yi B, Broadley MR, Shi L (2017) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Ding GD, White PJ, Wang XH, Jin KM, Xu FS, Shi L (2018) Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops: opportunities and challenges. Plant Soil. https://doi.org/10.1007/s11104-018-3706-6

    Article  Google Scholar 

  • Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR, Greenwood DJ, Hammond JP (2005) Genetic modifications to improve phosphorus acquisition by roots. In: Proceedings 568. International Fertiliser Society, York, UK

  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013a) Root traits for infertile soils. Front Plant Sci 4:193

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013b) Matching roots to their environment. Ann Bot 112:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao G, Qin H, Zhou J, Quan R, Lu X, Huang R, Zhang H (2016) OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Plant Mol Biol 90:293–302

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Zhang HW (2009) Study on physiological mechanisms of phosphorus efficiency in Brassica napus. Dissertation, Huazhong Agricultural University

  • Zhang H, Huang Y, Ye X, Xu F (2011) Genotypic variation in phosphorus acquisition from sparingly soluble P sources is related to root morphology and root exudates in Brassica napus. Sci China Life Sci 54:1134–1142

    CAS  PubMed  Google Scholar 

  • Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, Broadley MR, Shi L, Meng J (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005a) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005b) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (Grant No. 2017YFD0200200), the Applied Basic Research Fronts Program of Wuhan city (2018020401011302), National Nature Science Foundation of China (31972498), Fundamental Research Funds for the Central Universities of China (Grant No. 2662019PY013) and the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1 The plasticity of root traits of the BnaTNDH mapping population in response to phosphorus deficiency in the ‘agar’ and ‘pouch and wick’ systems. a, total root length (TRL); b, primary root length (PRL); c, total lateral root length (LRL); d, mean lateral root length (MLRL); e, lateral root number (LRN); f, lateral root density (LRD). Boxes represent the mid two quartiles with the median and mean drawn. Whiskers are the 95% confidence limits plus extremes (JPEG 656 kb)

Supplementary Fig.

 2 Location of QTLs for TRL (total root length), PRL (primary root length), LRL (total lateral root length), MLRL (mean lateral root length), LRN (lateral root length), LRD (lateral root density) and its relative traits. The red bar above the chromosome denotes the QTL identified at a low P supply. The green bar below the chromosome denotes the QTL identified at an optimal P supply. The purple bar inside the chromosome denotes the QTL for relative root trait. The red star indicates that the QTL for a root trait is co-located with the QTL for its relative trait (JPEG 1330 kb)

Supplementary Fig.

 3 The illumination of roots altered the response of root architecture to phosphate deprivation in Arabidopsis thaliana. Col-0 seedlings were grown at a low (-P, 0 mM) and an optimal P supply (+P, 0.625 mM) with the root exposed to light (LGR, light-grown roots) or in darkness (DGR, dark grown roots) in an illuminated culture room with 16 h photoperiod of approximately 300–320 μmol m−2 s−1, temperature at 18–24 °C and a relative humidity of 65–80% for 21 days. Scale bar = 2 cm (JPEG 2240 kb)

Supplementary Fig.

 4 The illumination of roots altered the response of root architecture to phosphate deprivation in Brassica napus. Tapidor and Ningyou 7 seedlings were grown at a low (-P, 0 mM) and an optimal P supply (+P, 0.625 mM) with the root exposed to light (LGR, light-grown roots) or in darkness (DGR, dark grown roots) in an illuminated culture room with 16 h photoperiod of approximately 300–320 μmol m−2 s−1, temperature at 18–24 °C and a relative humidity of 65–80% for 9 days. Scale bar = 3 cm (JPEG 1213 kb)

Supplementary Fig.

 5 Total root length (a), primary root length (b), total lateral root length (c), mean lateral root length (d), lateral root number (e), lateral root density (f) of Tapidor and Ningyou 7 seedlings grown at a low (-P, 0 mM) and an optimal P supply (+P, 0.625 mM) with the root exposed to light (LGR, light-grown roots) or in darkness (DGR, dark grown roots). Data are shown as mean ± SD (n = 3–6). Asterisks indicate statistically significant differences between -P and +P (*P < 0.05; **P < 0.01) according to Student’s t test (JPEG 1938 kb)

Supplementary material 6 (DOCX 17 kb)

Supplementary material 7 (DOCX 19 kb)

Supplementary material 8 (XLSX 12 kb)

Supplementary material 9 (DOCX 21 kb)

Supplementary material 10 (DOCX 19 kb)

Supplementary material 11 (XLSX 16 kb)

Supplementary material 12 (XLSX 28 kb)

Supplementary material 13 (XLSX 11 kb)

Supplementary material 14 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Y., Ding, G. et al. Identification of QTLs for relative root traits associated with phosphorus efficiency in two culture systems in Brassica napus. Euphytica 215, 192 (2019). https://doi.org/10.1007/s10681-019-2512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2512-4

Keywords

Navigation