Skip to main content
Log in

Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Diploid species with a common Gossypium origin are highly diverse in morphology and have been classified into eight genomic groups designated A–G and K. In this study, the transferability of 207 Gossypium arboreum-derived expressed sequence tag-simple sequence repeat (EST-SSR) primer pairs was examined among 25 different diploid accessions representing 7 genomes and 23 Gossypium species. We found that 124 of the 207 (60%) primer pairs produced amplification products in all 25 accessions. The remaining 83 (40%) primer pairs produced amplification in only a subset of species, ranging from 13 to 22 species, which is consistent with some genome- and species-specific amplification. The cross-species amplification of these EST-SSRs in 22 diploid species was 96.5% in 4,554 combinations (207 SSRs×22 species), indicative of a high transferability among the Gossypium species. Furthermore, a high level of polymorphism with an average number of 6.53 alleles per SSR marker was detected. No correlation was found between the repeat motif type and cross-species amplification. DNA sequencing showed that the high-level polymorphism findings was mainly due to changes in the number of repeat motifs and that the high transferability can be attributed to a higher-level conservation in the flanking regions among these diploid Gossypium species. The transferability among these different diploid species presented here can increase the efficiency of transferring genetic information across species and further enhance their introgression into cultivated cotton species by the molecular tagging of important genes existing in these diploid species using the EST-SSR markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

PCR:

Polymerase chain reaction

dpa:

Day post-anthesis

bp:

Base pair

SSR:

Simple sequence repeats

References

  • Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D,Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. Plant Sci 166:349–356

    Article  CAS  Google Scholar 

  • Beasley JO (1940) The origin of American tetraploid Gossypium species. Am Nat 74:285–286

    Article  Google Scholar 

  • Brubaker CL, Brown AHD, Stewart JMcD, Kilby MJ, Grace JP (1999) Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica 108:199–213

    Article  Google Scholar 

  • Caudrado A, Schwarzacher T (1998). The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosome 107:587–594

    Article  Google Scholar 

  • Chee PW, Rong J, Williams-Coplin D, Schulze SR, Paterson AP (2004) EST derived PCR-based markers for functional gene homologues in cotton. Genome 47:449–462

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Cho YG, McCouch SR (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genomics 268:331–343

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Di Rienzo A, Peterson AA, Garza JC, Valdes AM (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Agron 23:271–375

    Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sedge MK, Wang L, May GD, Chekhovskij K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribe. Texas A&M University Press, College Station

    Google Scholar 

  • Fryxell PA, Craven LA, Stewart JM (1992) A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species. Syst Bot 17:91–114

    Article  Google Scholar 

  • Guo WZ, Zhang TZ, Sheng XL, John Y, Kohel RJ (2003a) Development of SCAR marker linked to a major QTL for high fiber strength and its molecular marker assisted selection in Upland cotton. Crop Sci 6:2252–2256

    Google Scholar 

  • Guo WZ, Wang K, Zhang TZ (2003b) A and D genome evolution in Gossypium revealed using SSR molecular markers. Acta Genet Sin 30:183–188

    CAS  Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327

    Article  PubMed  CAS  Google Scholar 

  • Jiang CX, Wright RJ, El-zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  PubMed  CAS  Google Scholar 

  • John ME (1996) Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol 30:297–306

    Article  PubMed  CAS  Google Scholar 

  • Karpinska B, Karlsson M, Srivastava M, Stenberg A, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G (2004) MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Mol Biol 56:255–270

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  PubMed  CAS  Google Scholar 

  • Kohel RJ, Yu J, Park YH, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172

    Article  CAS  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2–1 fatty acid desaturase 5′UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot 88:92–102

    Article  PubMed  CAS  Google Scholar 

  • Menzel MY (1954) A cytological method for genome analysis in Gossypium. Genetics 40:214–223

    Google Scholar 

  • Meredith WRJ (1991) Contributions of introductions to cotton improvement. In: Shands HL, Wiesner LE (eds) Use of plant introductions in cultivar development. Crop science of America, Madison, pp 127–146

    Google Scholar 

  • Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Nolte KD, Hendrix DL, Radin JW, Koch KE (1995) Sucrose synthase location during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol 109:1285–1293

    PubMed  CAS  Google Scholar 

  • Paterson AH, Brubaker C, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123

    CAS  Google Scholar 

  • Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113

    Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, vers. 2.0. Applied Biostatistics Inc, New York

    Google Scholar 

  • Rossetto M, Mcnally J, Henry RJ (2002) Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet 104:61–66

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy UK, Kantety RV (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130:355–364

    Article  CAS  Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang LJ, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • SAS institute (1989) SAS/STAT user’s guide, version 6, 4th edn. SAS Institute, Cary

    Google Scholar 

  • Seelanan T, Brubaker CL, Stewart JM, Craven LA, Wendel JF (1999) Molecular systematics of Australian Gossypium section Grandicalyx (Malvaceae). Syst Bot 24:183–208

    Article  Google Scholar 

  • Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe. Syst Bot 22:259–290

    Article  Google Scholar 

  • Shen XL, Yuan YL, Guo WZ, Zhu XF, Zhang TZ (2001) Genetic stability of a major QTL for fiber strength and its marker-assisted selection in Upland cotton. High Tech Lett 11:13–16

    Google Scholar 

  • Song XL, Wang K, Guo WZ, Zhang J, Zhang TZ (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. × G. barbadense L. Genome 48:378–390

    Article  PubMed  CAS  Google Scholar 

  • Stewart JM (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW (eds) Challenging the future: proceedings of the world cotton research conference-1, Brisbane Australia. CSIRO, Melbourne, pp 313–327

  • Wendel JF (1989) New world tetraploid cottons contain old world cytoplasm. Proc Natl Acad Sci USA 86:4132–4136

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium L.): Character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143

    Article  Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Rapid detection of SSR with PAGE/silver staining. Cotton Sci 12:267–269

    CAS  Google Scholar 

  • Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton. Theor Appl Genet 106:262–268

    PubMed  CAS  Google Scholar 

  • Zhao XP, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM, Wendel JF, Paterson AH (1998) Dispersed repetitive DNA has spread to new genomes since polyploidy formation in cotton. Genome Res 8:479–492

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported in part by grants from the National Natural Science Foundation of China (30270806, 30471104), the State Key Basic Research and Development Plan of China (2002CB111301), the Program for Changjiang Scholars and Innovative Research Team in University and the Natural Science Foundation of Jiangsu Province (BK2003414). Thanks to M. Xia and S. Z. Ke for their help in formatting the original data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhen Zhang.

Additional information

Communicated by J.S. Heslop-Harrison

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Wang, W., Zhou, B. et al. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium . Theor Appl Genet 112, 1573–1581 (2006). https://doi.org/10.1007/s00122-006-0261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0261-y

Keywords

Navigation