Skip to main content
Log in

Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

5S RNA genes and their nontranscribed spacers are tandemly repeated in plant genomes at one or more chromosomal loci. To facilitate an understanding of the forces that govern 5S rDNA evolution, copy-number estimation and DNA sequencing were conducted for a phylogenetically well-characterized set of 16 diploid species of cotton (Gossypium) and 4 species representing allopolyploid derivatives of the diploids. Copy number varies over twentyfold in the genus, from approximately 1,000 to 20,000 copies/2C genome. When superimposed on the organismal phylogeny, these data reveal examples of both array expansion and contraction. Across species, a mean of 12% of nucleotide positions are polymorphicwithin individual arrays, for both gene and spacer sequences. This shows, in conjunction with phylogenetic evidence for ancestral polymorphisms that survive speciation events, that intralocus concerted evolutionary forces are relatively weak and that the rate of interrepeat homogenization is approximately equal to the rate of speciation. Evidence presented also shows that duplicated 5S rDNA arrays in allopolyploids have retained their subgenomic identity since polyploid formation, thereby indicating that interlocus concerted evolution has not been an important factor in the evolution of these arrays. A descriptive model, one which incorporates the opposing forces of mutation and homogenization within a selective framework, is outlined to account for the empirical data presented. Weak homogenizing forces allow equivalent levels of sequence polymorphism to accumulate in the 5S gene and spacer sequences, but fixation of mutations is nearly prohibited in the 5S gene. As a consequence, fixed interspecific differences are statistically underrepresented for 5S genes. This result explains the apparent paradox that despite similar levels of gene and spacer diversity, phylogenetic analysis of spacer sequences yields highly resolved trees, whereas analyses based on 5S gene sequences do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels R, Baum BR, Clark BC (1992) The 5S DNA units of bread wheat (Triticum aestivum). Plant Syst Evol 183:183–194

    Article  CAS  Google Scholar 

  • Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK (ed)DNA systematics, vol. II. CRC Press, Boca Raton, FL, pp 81–155

    Google Scholar 

  • Arnheim, N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 38–61

    Google Scholar 

  • Basten CJ, Ohta T (1992) Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. Genetics 132:247–252

    CAS  PubMed  Google Scholar 

  • Baum BR, Appels R (1992) Evolutionary change at the5S Dna loci of species in the Triticeae. Plant Syst Evol 183:195–208

    Article  CAS  Google Scholar 

  • Baum BR, Johnson DA (1994) The molecular diversity of the 5S rRNA gene in barley (Hordeum vulgare). Genome 37:992–998

    CAS  PubMed  Google Scholar 

  • Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803

    CAS  Google Scholar 

  • Brubaker CL, Wendel IF (1993) On the specific status ofGossypium lanceolatum Todaro. Genet Resources Crop Evol 40:165–170

    Google Scholar 

  • Campell BR, Song Y, Posch TE, Collis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes ofArabidopsis thaliana. Gene 112:225–228

    Article  CAS  PubMed  Google Scholar 

  • Capesius I (1991) Sequence of the 5S ribosomal RNA gene fromSinapis alba. Plant Mol Biol 17:169–170

    Article  CAS  PubMed  Google Scholar 

  • Cox AV, Bennett MD, Dyer TA (1992) Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.). Theor Appl Genet 83:684–690

    Article  CAS  Google Scholar 

  • Crane CF, Price HJ, Stelly DM, Czeshin DG, McKnight TD (1993) Identification of a homeologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum). Genome 36:1015–1022

    CAS  Google Scholar 

  • DeJoode DR (1992) Molecular insights into speciation in the genusGossypium L. (Malvaceae).MS thesis, Iowa State University, Ames, IA

    Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton,Gossypium tomentosum, Am J Bot 79: 1311–1319

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    CAS  PubMed  Google Scholar 

  • Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann Mo Bot Garden 79:333–345

    Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  CAS  PubMed  Google Scholar 

  • Dover GA (1994) Concerted evolution, molecular drive and natural selection. Curr Biol 4:1165

    Article  CAS  PubMed  Google Scholar 

  • Dvorák J, Zhang H-B, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016

    Google Scholar 

  • Dvorák J (1990) Evolution of multigene families: the ribosomal RNA loci of wheat and related species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, pp 83–97

    Google Scholar 

  • Edwards GA, Endrizzi JE, Stein R (1974) Genome DNA content and chromosome organization inGossypium. Chromosoma 47:309–326

    Article  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution ofGossypium. Adv Genet 23:271–375

    Google Scholar 

  • Fryxell PA (1979)The natural history of the cotton tribe. Texas A&M Univ Press, College Station, TX

    Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation ofGossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Gerbi SA (1985) Evolution of ribosomal DNA. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, NY, pp 419–490

    Google Scholar 

  • Gottlob-McHugh SG, Lévesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybeanGlycine max (L). Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494

    CAS  PubMed  Google Scholar 

  • Halanych KM (1991) 5S Ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol Biol Evol 8:249–253

    CAS  Google Scholar 

  • Hemleben V, Werts D (1988) Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata andMatthiola incana). Gene 62:165–169

    Article  CAS  PubMed  Google Scholar 

  • Hood L, Campbell JH, Elgin SCR (1975) The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet 9:305–353

    Article  CAS  PubMed  Google Scholar 

  • Kadir ZBZ (1976) DNA evolution in the genusGossypium. Chromosoma 56:85–94

    CAS  Google Scholar 

  • Kanazin V, Ananiev E, Blake T (1993) The genetics of 5S rRNA encoding multigene families in barley. Genome 36:1023–1028

    CAS  PubMed  Google Scholar 

  • Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140:325–343

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Korn LJ (1982) Transcription ofXenopus 5S ribosomal RNA genes. Nature 295:101–105

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Koichir T, Nei M (1993) MEGA, molecular evolutionary genetics analysis, v 1.0. Penn State Univ, University Park, PA

    Google Scholar 

  • Li W-S, Luo C-C, Wu C-I (1985) Evolution of DNA Sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, NYC, NY, pp 1–94

    Google Scholar 

  • Linares AR, Brwen T, Dover GA (1994) Aspects of nonrandom turnover involved in the concerted evolution of intergenic spacers within the ribosomal DNA ofDrosophila melanogaster. J Mol Evol 39:151–159

    CAS  PubMed  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  CAS  PubMed  Google Scholar 

  • Maddison DR (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40:315–328

    Google Scholar 

  • Masterson J (1994) Stomaral size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Google Scholar 

  • McDade LA (1990) Hybrids and phylogenetic systematics I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44:1685–1700

    Google Scholar 

  • McDade LA (1992) Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46:1329–1346

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at theAdh locus inDrosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78:183–188

    CAS  Google Scholar 

  • Nagylaki T, Petes TD (1982) Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100:315–337

    CAS  PubMed  Google Scholar 

  • Nagylaki T (1984a) The evolution of multigene families under intrachromosomal gene conversion. Genetics 106:529–548

    CAS  PubMed  Google Scholar 

  • Nagylaki T (1984b) Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci USA 81:3796–3800

    CAS  PubMed  Google Scholar 

  • Nagylaki T (1990) Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes. Genetics 126:261–276

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY

    Google Scholar 

  • Ohta T, Dover GA (1983) Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci USA 80:4079–4083

    CAS  PubMed  Google Scholar 

  • Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240

    CAS  PubMed  Google Scholar 

  • Ohta T (1984) Some models of gene conversion for treating the evolution of multigene families. Genetics 106:517–528

    CAS  PubMed  Google Scholar 

  • Ohta T (1990) How gene families evolve. Theor Popul Biol 37:213–219

    CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    CAS  Google Scholar 

  • Percival AE (1987) The national collection ofGossypium germplasm. Southern Cooperative Series Bull 321, College Station, TX

  • Playford J, Appels R, Baum BR (1992) The 5S DNA units ofAcacia species (Fabaceae). Plant Syst Evol 183:235–247

    Article  CAS  Google Scholar 

  • Rafalski JA, Wiewiorowski M, Söll D (1982) Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupin (Lupinus luteus). Nucleic Acids Res 10:7635–7642

    CAS  PubMed  Google Scholar 

  • Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel IF, Paterson AH (1994) A detailed RFLP map of cotton,Gossypium hirsutum ×G. barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    CAS  PubMed  Google Scholar 

  • Röder MS, Sorrells ME, Tanksley SD (1992) 5S ribosomal gene clusters in wheat: pulsed field gel electrophoresis reveals a high degree of polymorphism. Mol Gen Genet 232:215–220

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook JE, Fritsch F, Maniatis T (1989)Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5S DNA. Plant Syst Evol 183: 169–181

    Article  CAS  Google Scholar 

  • Schlötterer C, Tautz D (1994) Chromosomal homogeneity ofDrosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783

    PubMed  Google Scholar 

  • Schneeberger RG, Creissen GP, Cullis CA (1989) Chromosomal and molecular analysis of 5S RNA gene organization in the flax,Linum usitatissimum. Gene 83:75–84

    Article  CAS  PubMed  Google Scholar 

  • Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol 160:105–122

    Article  CAS  Google Scholar 

  • Sharp SJ, Garcia AD (1988) Transcription of theDrosophila melanogaster 5s RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 8:1266–1274

    CAS  PubMed  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. WH Freeman, San Francisco

    Google Scholar 

  • Steele KP, Holsinger KE, Jansen RK, Taylor DW (1991) Assessing the reliability of 5S rRNA sequence data for phylogenetic analysis in green plants. Mol Biol Evol 8:240–248

    CAS  Google Scholar 

  • Swofford DL (1990) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey,Champaign, IL

    Google Scholar 

  • Tyler BM (1987) Transcription ofNeurospora crassa 5S rRNA genes requires a TATA box and three internal elements. J Mol Biol 196: 801–811

    Article  CAS  PubMed  Google Scholar 

  • Vawter L, Brown WM (1993) Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics 134:597–608

    CAS  PubMed  Google Scholar 

  • VanderWiel PS, Voytas DF, Wendel IF (1993)Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36:429–447

    CAS  PubMed  Google Scholar 

  • Wendel IF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86:4132–4136

    CAS  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bet 17:115–143

    Google Scholar 

  • Wendel JF, Percival AE (1990) Molecular divergence in the Galapagos Island-Baja California species pair,Gossypium klotzschianum andG. davidsonii (Malvaceae). Plant Syst Evol 171:99–115

    Article  CAS  Google Scholar 

  • Wendel IF, Olson PD, Stewart JM (1989) Genetic diversity, introgression and independent domestication of Old World cultivated cottons. Am J Bot 76:1795–1806

    Google Scholar 

  • Wendel JF, Rowley R, Stewart J (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton,Gossypium mustelinum (Malvaceae). Plant Syst Evol 192:49–59

    Article  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995a) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    CAS  PubMed  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995b) An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phyl Evol 4:298–313

    CAS  Google Scholar 

  • Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol Biol Evol 5:90–96

    CAS  PubMed  Google Scholar 

  • White RJ (1994) RNA polymerase III transcription. RG Landes, Austin, TX

    Google Scholar 

  • Williams S (1990) The opportunity for natural selection on multigene families. Genetics 124:439–441

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Wolters J, Erdmann VA (1988) Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Res 16(suppl):r1-r70

    CAS  PubMed  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson Ac (1980) Rapid duplication and loss of genes coding for the alpha-chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162

    CAS  PubMed  Google Scholar 

  • Zimmer EA, Jupe ER, Walbot VA (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120: 1125–1136

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J.F. Wendel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronn, R.C., Zhao, X., Paterson, A.H. et al. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42, 685–705 (1996). https://doi.org/10.1007/BF02338802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02338802

Key words

Navigation