Skip to main content
Log in

RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

An introgression derived from the B genome of Brassica juncea in spring-type oilseed rape (B. napus) conferring recessively inherited cotyledon resistance against several pathotypes of the blackleg fungus Leptosphaeria maculans was mapped using PCR-based molecular markers. Resistance-associated B-genome-specific randomly amplified (RAPD) and resistance gene analog (RGA) DNA polymorphisms were converted into three sequence-specific markers (SCARs; B5-1520, C5-1000, RGALm). The flanking sequence of the RGALm locus was determined by genomic walking, leading to a 1,610-bp EcoRV fragment which showed extensive homology to known and putative resistance genes of a cluster on Arabidopsis chromosome 5. Partial sequence analysis of the genomic RAPD segment OPC-05-1700 revealed strong homology to the gibberellin 2-oxidase gene of Arabidopsis. The SCAR markers were analyzed in two segregating populations and were found to be linked in coupling to each other, and in repulsion to the resistance locus. In both populations, markers deviated significantly from a monogenic 3:1 segregation ratio, with plants lacking the markers being more frequent than expected. Although the mode of introgression is yet unknown, the recombinant individuals observed among susceptible progeny suggest homeology between the B-genome-specific segment and its B. napus counterpart. This would offer prospects for reducing the size of the introgression and further fine mapping of the resistance locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) gapped blast and psi-blast: a new generation of protein database search programmes. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Attard A, Ansan-Melayah D, Delourme R, Renard M, Rouxel T (2001) Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 92:1122–1133

    Google Scholar 

  • Barret P, Guérif J, Reynoird JP, Delourme R, Eber F, Renard M, Chèvre AM (1998) Selection of stable Brassica napus – B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 2. A ‘to and fro’ strategy to localise and characterise interspecific introgressions on the B. napus genome. Theor Appl Genet 96:1097–1103

    Article  CAS  Google Scholar 

  • Chèvre AM, Eber F, This P, Barret P, Tanguy X, Brun H, Delseny M, Renard M (1996) Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus- B. nigra addition lines. Plant Breed 115:113–118

    Google Scholar 

  • Chèvre AM, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11:968–978

    CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dixelius C (1999) Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus. Plant Breed 118:151–156

    Article  Google Scholar 

  • Dixelius C, Wahlberg S (1999) Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica genome. Theor Appl Genet 99:368–372

    Article  Google Scholar 

  • Fisher RA, Balmakund B (1928) The estimation of linkage from the offspring of selfed heterozygotes. J Genet 20:79–92

    Google Scholar 

  • Fourmann M, Charlot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44:1083–1099

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  PubMed  Google Scholar 

  • Holub EB (1997) Organisation of resistance genes in Arabidopsis. In: Crute IR, Burdon JJ, Holub EB (eds) The gene-for-gene relationship in host–parasite interactions. CAB Int, Wallingford, pp 5–26

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Joyeux A, Fortin MG, Mayerhofer R, Good AG (1999) Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome 42:735–743

    Article  CAS  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, González de Léon D (1995) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90:81–89

    Google Scholar 

  • Mengistu A, Rimmer SR, Koch E, Williams PH (1991) Pathogenicity grouping of isolates of Leptosphaeria maculans on Brassica napus cultivars and their disease reaction profiles on rapid-cycling Brassicas. Plant Dis 75:1279–1282

    Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    CAS  PubMed  Google Scholar 

  • Pang ECK, Halloran GM (1996) The genetics of adult-plant blackleg (Leptosphaeria maculans) resistance from Brassica juncea in B. napus. Theor Appl Genet 92:382–387

    Article  Google Scholar 

  • Penner GA (1996) RAPD analysis of plant genomes. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 251–268

    Google Scholar 

  • Plieske J, Struss D (2001) STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet 102:483–488

    Article  CAS  Google Scholar 

  • Plieske J, Struss D, Röbbelen G (1998) Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor Appl Genet 97:929–936

    Article  CAS  Google Scholar 

  • Quiros CF, Hu J, This P, Chèvre AM, Delseny M (1991) Development and chromosomal localization of genome specific markers by polymerase chain reaction in Brassica. Theor Appl Genet 82:627–632

    Article  CAS  Google Scholar 

  • Renard M, Brun H (1979) Screening for resistance to Phoma lingam and Sclerotinia sclerotiorum in Brassica napus. In: Proc Eucarpia Cruciferae Conf. Pudoc, Wageningen, pp 137–147

  • Rimmer SR, van den Berg CGJ (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14:56–66

    Google Scholar 

  • Rouxel T, Willner E, Coudard L, Balesdent M-H (2003) Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions. Euphytica 133:219–231

    Article  CAS  Google Scholar 

  • Roy NN (1978) A study on disease variation in the populations of an interspecific cross of Brassica juncea L. × Brassica napus L. Euphytica 27:145–149

    Article  Google Scholar 

  • Roy NN (1984) Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica 33:295–303

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 123:505–511

    Article  CAS  Google Scholar 

  • Sacristán MD, Gerdemann M (1986) Different behaviour of Brassica juncea and Brassica carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Plant Breed 97:304–314

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    CAS  PubMed  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor–nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  CAS  PubMed  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    CAS  PubMed  Google Scholar 

  • Sillito D, Parkin IAP, Mayerhofer R, Lydiate DJ, Good AG (2000) Arabidopsis thaliana: a source of candidate disease-resistance genes for Brassica napus. Genome 43:452–460

    Article  CAS  PubMed  Google Scholar 

  • Struss D, Bellin U, Röbbelen G (1991) Development of B-genome chromosome addition lines of B. napus using different interspecific Brassica hybrids. Plant Breed 106:209–214

    Google Scholar 

  • Struss D, Quiros CF, Plieske J, Röbbelen G (1996) Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93:1026–1032

    Article  CAS  Google Scholar 

  • Tanhuanpää P (2004) Identification and mapping of resistance gene analogs and a white rust resistance locus in Brassica rapa ssp. oleifera. Theor Appl Genet 108:1039–1046

    Article  PubMed  Google Scholar 

  • Van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, King GJ (2001) Characterisation of disease resistance gene-like sequences in Brassica oleracea L. Theor Appl Genet 102:555–563

    Article  CAS  Google Scholar 

  • Williams PH, Delwiche PA (1979) Screening for resistance to blackleg of crucifers in the seedling stage. In: Proc Eucarpia Cruciferae Conf. Pudoc, Wageningen, pp 164–170

  • Yu YG, Buss GR, Saghai Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  CAS  PubMed  Google Scholar 

  • Zhu JS, Struss D, Röbbelen G (1993) Studies on resistance to Phoma lingam in Brassica napus-Brassica nigra addition lines. Plant Breed 111:192–197

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge financial support by the EU (FAIR-CT97-3509). We are also grateful to M. Hantschmann, B. Schmidt and B. Brückner for excellent technical assistance and to W.E. Weber for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Saal.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saal, B., Struss, D. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. Theor Appl Genet 111, 281–290 (2005). https://doi.org/10.1007/s00122-005-2022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2022-8

Keywords

Navigation