Skip to main content
Log in

Development of a SCAR marker linked to bacterial wilt (Ralstonia solanacearum) resistance in tomato line Hawaii 7996 using bulked-segregant analysis

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

We report the development of a codominant sequence characterized amplified region (SCAR) marker linked to bacterial wilt resistance in tomato line Hawaii 7996. Bulked segregant analysis was employed for rapid identification of RAPD markers linked to resistance genes. Genomic DNA from six resistant F9 recombinant inbred lines (RILs) and six susceptible F9 RILs, which derived from a cross between S. lycopersicum Hawaii 7996 (resistant parent) and S. pimpinellifolium WVa 700 (susceptible parent) were pooled in to an R-pool and an S-pool, respectively. A total of 800 RAPD primers were screened and only six primers (UBC#176, 205, 287, 317, 350, and 676) showed polymorphism between R- and S- pools. Of these, only two markers UBC#176 and 317 revealed a 100% linkage in the individual plants comprising the contrasting bulks. Of these, the marker UBC#176 was converted into a codominant SCAR marker and designated as SCU176-534. The marker SCU176-534 was confirmed by genotyping the individual of the R- and S- pools and gave the same result as UBC#176. When the marker SCU176-534 was further validated for association with resistance and its potential for maker-assisted selection (MAS) in 92 tomato lines and cultivars, the results showed that none of these carries the resistance gene. Thus, SCAR marker SCU176-534 can be used in early selection of resistant lines when Hawaii 7996 is used as a parent in a breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Carmeille, A., C. Caranta, J. Dintinger, P. Prior, J. Luisetti, and P. Besse. 2006. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet. 113:110–121.

    Article  CAS  PubMed  Google Scholar 

  • Danesh, D. and N.D. Young. 1994. Partial resistance loci for tomato bacterial wilt show differential race specificity. Rep. Tomato Genet. Coop. 44:12–13.

    Google Scholar 

  • Denny, T.P. and A.C. Hayward. 2001. II. Gram-negative bacteria Ralstonia. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria. APS Press, St. Paul.

    Google Scholar 

  • Du, Z., R. Hou, Y. Zhu, X. Li, H. Zhu, and Z. Wang. 2011. A random amplified polymorphic DNA (RAPD) molecular marker linked to late-bolting gene in pak-choi (Brassica campestris ssp chinensis Makino L.). Afr. J. Biotechnol. 10:7962–7968.

    CAS  Google Scholar 

  • Geethanjali, S., K.-Y. Chen, D.V. Pastrana, and J.-F. Wang. 2010. Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85–97.

    Article  CAS  Google Scholar 

  • Grimault, V., P. Prior, and G. Anais. 1995. A monogenic dominant resistance of tomato to bacterial wilt in Hawaii-7996 is associated with plant colonization by Pseudomonas-solanacearum. J. Phytopathol. 143:349–352.

    Article  Google Scholar 

  • Gupta, S.K., A. Charpe, K.V. Prabhu, and Q.M. Haque. 2006. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 113:1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Jaunet, T.X. and J.F. Wang. 1999. Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, P.M., J.F. Wang, O. Licardo, S.Y. Hanudin Mah, G.L. Hartman, and Y.C. Lin. 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. Hortscience 31:143–146.

    Google Scholar 

  • Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98.

    CAS  Google Scholar 

  • Hayward, A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas-solanacearum. Annu. Rev. Phytopathol. 29:65–87.

    Article  CAS  PubMed  Google Scholar 

  • Hayward, A.C. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. In: A.C. Hayward, G.L. Hartman (eds) Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford.

    Google Scholar 

  • Hong, J.C., M.T. Momol, P. Ji, S.M. Olson, J. Colee, and J.B. Jones. 2011. Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Prot. 30:1340–1345.

    Article  CAS  Google Scholar 

  • Horejsi, T., J.M. Box, and J.E. Staub. 1999. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J. Am. Soc. Hortic. Sci. 124:128–135.

    CAS  Google Scholar 

  • Iglesias-Andreu, L., M. Luna-Rodriguez, M. Duran-Vazquez, A. Rivera-Fernandez, and N. Sanchez-Coello. 2010. RAPD markers associated with sex expression in Ceratozamia mexicana Brongniart (Zamiaceae). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente 16: 139–145.

    Article  Google Scholar 

  • Fegan, M. and P. Prior. 2005. How complex is the Ralstonia solanacearum species complex. In C. Allen, P. Prior and A.C. Hayward (Ed.), Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex 1st ed. APS Press. Minnesota.

    Google Scholar 

  • Ji, P., M.T. Momol, S.M. Olson, P.M. Pradhanang, and J.B. Jones. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497–500.

    Article  CAS  Google Scholar 

  • Khampila, J., K. Lertrat, W. Saksirirat, J. Sanitchon, N. Muangsan, and P. Theerakulpisut. 2008. Identification of RAPD and SCAR markers linked to northern leaf blight resistance in waxy corn (Zea mays var. ceratina). Euphytica 164:615–625.

    Article  CAS  Google Scholar 

  • Krausz, J. P. and H. D. Thurston. 1975. Breakdown of resistance to Pseudomonas solanacearum in tomato. Phytopathology 65: 1272–1274.

    Article  Google Scholar 

  • Lebeau, A., M.C. Daunay, A. Frary, A. Palloix, J.F. Wang, J. Dintinger, F. Chiroleu, E. Wicker, and P. Prior. 2011. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resource respond to diverse strain in the Ralstonia solanacearum species complex. Phytopathology 101:154–165.

    Article  CAS  PubMed  Google Scholar 

  • Makandar, R. and K.V. Prabhu. 2009. Identification of RAPD markers associated with Helminthosporium leaf blight (HLB) disease resistance in wheat. Indian J. Genet. Plant Breed. 69:171–177.

    CAS  Google Scholar 

  • Mangin, B., P. Thoquet, J. Olivier, and N.H. Grimsley. 1999. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mejía, L., B.E. Garcia, A.C. Fulladolsa, E.R. Ewert, J.-F. Wang, J.W. Scott, C. Allen, and D.P. Maxwell. 2009. Evaluation of recombinant inbred lines for resistance to Ralstonia solanacearum in Guatemala and preliminary data on PCR-based tagging of introgressions associated with bacterial wilt-resistant line, Hawaii 7996. Rep. Tom Genet. Coop. 59:32–41.

    Google Scholar 

  • Miao, L., S. Shou, J. Cai, F. Jiang, Z. Zhu, and H. Li. 2009. Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol. Biol. Rep. 36:479–486.

    Article  CAS  PubMed  Google Scholar 

  • Michelmore, R., I. Paran, and R.V. Kesseli. 1991. Identification of marker linked to disease resistance gene by bulk segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc. Natl. Acad. Sci. 88:9828–9832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohan, M., S. Nair, A. Bhagwat, T.G. Krishna, M. Yano, C.R. Bhatia, and T. Sasaki, 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed. 3:87–103.

    Article  CAS  Google Scholar 

  • Nakaho, K., S. Takaya, Y. Sumida. 1996. Conditions that increase latent infection of grafted or non-grafted tomatoes [Lycopersicon esculentum] with Pseudomonas solacearum. Ann. Phytopathol. Soc. Jpn. 62:234–239.

    Article  Google Scholar 

  • Rozen, S. and H. J. Skaletsky. 2000. Primer3 on the SSS for general users and for biologist programmers. Methods Mol. Biol. 132:365–386.

    CAS  PubMed  Google Scholar 

  • Panthee, D.R. and M.R. Foolad. 2012. A reexamination of molecular markers for use in marker-assisted breeding in tomato. Euphytica 184:165–179.

    Article  CAS  Google Scholar 

  • Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85:985–993.

    Article  CAS  PubMed  Google Scholar 

  • Parihar, A., A.R. Pathak, and P. Parihar. 2010. Identification of RAPD marker for the White Backed Plant Hopper (WBPH) resistant gene in rice. Afr. J. Biotechnol. 9:1423–1426.

    CAS  Google Scholar 

  • Pradhanang, P.M., P. Ji, M.T. Momol, S.M. Olson, J.L. Mayfield, J.B. Jones. 2005. Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis. 89:989–993.

    Article  CAS  Google Scholar 

  • Schaad, N.W. 1988. Identification schemes. In: Schaad, N.W. (Ed.). Laboratory guide of identification of plant pathogenic bacteria. American Phytopathological Society Press, St. Paul, Minn.

    Google Scholar 

  • Schonfeld, J., A. Gelsomino, L.S. van Overbeek, A. Gorissen, K. Smalla, and J.D. van Elsas. 2003. Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol. Ecol. 43:63–74.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J.W., J.F. Wang, and P. Hanson. 2005. Breeding tomatoes for resistance to bacterial wilt, a global view. Acta Hortic. 695:161–168.

    Google Scholar 

  • Shobha, D. and Thimmappaiah. 2011. Identification of RAPD markers linked to nut weight and plant stature in cashew. Sci. Hortic. 129:637–641.

    Article  CAS  Google Scholar 

  • Singh, M., I. Chaudhuri, S.K. Mandal, and R.K. Chaudhuri. 2011. Development of RAPD markers linked to Fusarium wilt resistance gene in Castor Bean (Ricinus communis L). Genet. Eng. Biotechnol. J. 2011:GEBJ-28.

  • Thoquet, P., J. Olivier, C. Sperisen, P. Rogowsky, H. Laterrot, and N. Grimsley. 1996. Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol. Plant-Microbe Interact. 9:826–836.

    Article  CAS  Google Scholar 

  • Tigchelaar, E.C. and V.W.D. Casali. 1976. Single seed descent: applications and merits in breeding self-pollinated crops. Acta Hortic. 63:85–90.

    Google Scholar 

  • Truong, H.T.H. 2007. Characterisation and mapping of bacterial wilt (Ralstonia solanacearum) resistance in the tomato (Solanum lycopersicum) cultivar Hawaii 7996 and wild tomato germplasm. PhD thesis. Von der Naturwissenschaftlichen Fakultät. Gottfried Wilhelm Leibniz Universität Hannover.

    Google Scholar 

  • Truong, H.T.H., E. Esch, and J.-F. Wang. 2008. Resistance to Taiwanese race 1 strains of Ralstonia solanacearum in wild tomato germplasm. Eur. J. Plant Pathol. 122:471–479.

    Article  Google Scholar 

  • Truong, H.T.H., J.H. Kim, M.C. Cho, S.Y. Chae, and H.E. Lee. 2013a. Identification and development of molecular markers linked to Phytophthora root rot resistance in pepper (Capsicum annuum L.). Eur. J. Plant Pathol. 135:289–297.

    Article  CAS  Google Scholar 

  • Truong, H.T.H, H.N. Nguyen, H.S. Choi, M.C. Cho, and H.E. Lee. 2013b. Development of a SCAR marker linked to the Phytophthora infestans resistance gene Ph-3 in tomato. Eur. J. Plant Pathol. 136:237–245

    Article  CAS  Google Scholar 

  • Wang, J.-F., F.-I. Ho, H.T.H. Truong, S.-M. Huang, C.H. Balatero, V. Dittapongpitch, and N. Hidayati. 2013. Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190:241–252.

    Article  CAS  Google Scholar 

  • Wang, J.F., P.M. Hanson, and J.A. Barnes. 1998. Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In: Prior, P., Allen, C., Elphinstone, J. (Eds.). Bacterial wilt disease: Molecular and ecological aspects. Springer-Verlog, Berlin.

    Google Scholar 

  • Wang, J.F., J. Olivier, P. Thoquet, B. Mangin, L. Sauviac, and N.H. Grimsley. 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant-Microbe Interact. 13:6–13.

    Article  CAS  PubMed  Google Scholar 

  • Wicker, E., P. Lefeuvre, J.C. Cambiaire, C. Lamaire, S. Poussier, and P. Proir. 2012. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum interred from MLSA. ISME J. 6:1–14

    Article  Google Scholar 

  • Winstead, N.N., and A. Kelman. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42:628–634.

    Google Scholar 

  • Yang, W.C. and D.M. Francis. 2005. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Hortic. Sci. 130:716–721.

    CAS  Google Scholar 

  • Zhang, H.Y., Y.M. Yang, F.S. Li, C.S. He, and X.Z. Liu. 2008. Screening and characterization a RAPD marker of tobacco brown-spot resistant gene. African J. Biotechnol. 7:2559–2561.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Thi Hong Truong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, H.T.H., Kim, S., Tran, H.N. et al. Development of a SCAR marker linked to bacterial wilt (Ralstonia solanacearum) resistance in tomato line Hawaii 7996 using bulked-segregant analysis. Hortic. Environ. Biotechnol. 56, 506–515 (2015). https://doi.org/10.1007/s13580-015-1050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-1050-9

Additional key words

Navigation