Skip to main content
Log in

Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2019

This article has been updated

Abstract

Key message

Su1-Ph1, which we previously introgressed into wheat from Aegilops speltoides, is a potent suppressor of Ph1 and a valuable tool for gene introgression in tetraploid wheat.

Abstract

We previously introgressed Su1-Ph1, a suppressor of the wheat Ph1 gene, from Aegilops speltoides into durum wheat cv Langdon (LDN). Here, we evaluated the utility of the introgressed suppressor for inducing introgression of alien germplasm into durum wheat. We built LDN plants heterozygous for Su1-Ph1 that simultaneously contained a single LDN chromosome 5B and a single Ae. searsii chromosome 5Sse, which targeted them for recombination. We genotyped 28 BC1F1 and 84 F2 progeny with the wheat 90-K Illumina single-nucleotide polymorphism assay and detected extensive recombination between the two chromosomes, which we confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH). We constructed BC1F1 and F2 genetic maps that were 65.31 and 63.71 cM long, respectively. Recombination rates between the 5B and 5Sse chromosomes were double the expected rate computed from their meiotic pairing, which we attributed to selection against aneuploid gametes. Recombination rate between 5B and 5Sse was depressed compared to that between 5B chromosomes in the proximal region of the long arm. We integrated ND-FISH signals into the genetic map and constructed a physical map, which we used to map a 172,188,453-bp Ph1 region. Despite the location of the region in a low-recombination region of the 5B chromosome, we detected three crossovers in it. Our data show that Su1-Ph1 is a valuable tool for gene introgression and gene mapping based on recombination between homoeologous chromosomes in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated in this study are included in this published article and its online resource files. Seeds of the Su1-Ph1 can be requested from HL or JD.

Change history

  • 01 October 2019

    Unfortunately, the 9th author name was incorrectly published in the original publication. The complete correct name is given below.

References

  • Akhunov ED, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105:261–268

    CAS  PubMed  Google Scholar 

  • Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A (2014) Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol Breed 34:1549–1562

    CAS  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    CAS  PubMed  Google Scholar 

  • Bhullar R, Nagarajan R, Bennypaul H, Sidhu GK, Sidhu G, Rustgi S, von Wettsteina D, Gill KS (2014) Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 (Ph1) gene mutations. Proc Natl Acad Sci USA 111:14187–14192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Zhang YP, Qi J, Wang HG, Wang RRC, Bao YG, Li XF (2018) Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 61:515–521

    CAS  PubMed  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine-polypurine satellite DNAs in wheat and barley. Heredity 44:344–366

    Google Scholar 

  • Devi U, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge A, King IP, King J (2019) Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC Plant Biol 19:183

    PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Gorham J (1992) Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na+ discrimination from T. aestivum. Genome 35:639–646

    Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Zhang HB (1992) Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theor Appl Genet 84:419–429

    CAS  PubMed  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    CAS  PubMed  Google Scholar 

  • Dvorak J, Dubcovsky J, Luo MC, Devos KM, Gale MD (1995) Differentiation between wheat chromosomes 4B and 4D. Genome 38:1139–1147

    CAS  PubMed  Google Scholar 

  • Dvorak J, Luo M-C, Yang Z-L (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006a) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    CAS  PubMed  Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006b) Discovery and mapping of the wheat Ph1 suppressors. Genetics 174:17–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Wang L, Zhu TT, Jorgensen CM, Deal KR, Dai XT, Dawson MW, Muller HG, Luo MC, Ramasamy RK, Dehghani H, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, You FM, Gulick PJ, McGuire PE (2018) Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. Plant J 95:487–503

    CAS  PubMed  Google Scholar 

  • Feldman M, Kislev M (1977) Aegilops searsii, a new species of section Sitopsis (Platystachys). Isr J Bot 26:190–201

    Google Scholar 

  • Foote T, Roberts M, Kurata N, Sasaki T, Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    CAS  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Res 7:1869–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal S, Yang CY, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J (2018) Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet 131:389–406

    CAS  PubMed  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    CAS  PubMed  Google Scholar 

  • Gyawali Y, Zhang W, Chao SM, Xu S, Cai XW (2019) Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theor Appl Genet 132:195–204

    CAS  PubMed  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Jampates R, Dvorak J (1986) Location of the Ph1 locus in the metaphase chromosome map and the linkage map of the 5Bq arm of wheat. Can J Genet Cytol 28:511–519

    Google Scholar 

  • Jorgensen C, Luo M-C, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J (2017) A high-density genetic map of wild emmer wheat from the Karaca dag region provides new evidence on the structure and evolution of wheat chromosomes. Front Plant Sci 8:1798

    PubMed  PubMed Central  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (Japanese). Agric Hort (Tokyo) 19:13–14

    Google Scholar 

  • Kimber G, Athwal RS (1972) A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA 69:912–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    CAS  PubMed  Google Scholar 

  • Li H, Wang CY, Fu SL, Guo X, Yang BJ, Chen CH, Zhang H, Wang YJ, Liu XL, Han FP, Ji WQ (2014) Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147. Genome 57:89–95

    CAS  PubMed  Google Scholar 

  • Li H, Deal KR, Luo MC, Ji WQ, Distelfeld A, Dvorak J (2017) Introgression of the Aegilops speltoides Su1-Ph1 suppressor into wheat. Front Plant Sci 8:2163

    PubMed  PubMed Central  Google Scholar 

  • Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo NX, Zhu TT, Wang L, Wang Y, McGuire PE, Liu SY, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan LX, Wang ZZ, Xia ZQ, Xiao LC, Anderson OD, Ouyang SH, Liang Y, Zimin AV, Pertea G, Qi P, Ennetzen JLB, Dai XT, Dawson MW, Muller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li PC, You FM, Sun QX, Liu ZY, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvorak J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81–89):107–116

    Google Scholar 

  • McIntyre CL, Clarke BC, Appels R (1988) Amplification and dispersion of repeated DNA sequences in the Triticeae. Plant Syst Evol 160:39–59

    CAS  Google Scholar 

  • Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inf Serv 5:6

    Google Scholar 

  • Rey MD, Martin AC, Higgins J, Swarbreck D, Uauy C, Shaw P, Moore G (2017) Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breed 37:95

    PubMed  PubMed Central  Google Scholar 

  • Riley R (1960) The diploidization of polyploid wheat. Heredity 15:407–429

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Google Scholar 

  • Salina EA, Lim KY, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023–1035

    CAS  PubMed  Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homeologous pairing. In: Proceedings of fourth international wheat genetics symposium, pp 191–200

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  • Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. In: Proceedings of international congress genetics, pp 258–259

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Google Scholar 

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech J 12:787–796

    CAS  Google Scholar 

  • Zhang W, Zhu XW, Zhang MY, Chao SM, Xu S, Cai XW (2018) Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet 131:2381–2395

    CAS  PubMed  Google Scholar 

  • Zhou SH, Zhang JP, Che YH, Liu WH, Lu YQ, Yang XM, Li XQ, Jia JZ, Liu X, Li LH (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotech J 16:818–827

    CAS  Google Scholar 

  • Zhu T, Wang L, Rodriguez JC, Deal KR, Avni R, Distelfeld A, McGuire PE, Dvorak J, Luo MC (2019) Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3 Genes Genomes Genet 9:619–624

    Google Scholar 

Download references

Acknowledgments

We thank Moshe Feldman (Weizmann Institute of Science, Rehovot Area, Israel) for providing Ae. searsii accession TE10. We also thank anonymous reviewers for reading the manuscript and valuable suggestions.

Funding

This work was supported in part by the China Scholarship Council, the US National Science Foundation (Grants IOS1212591 and IOS1238231), the USDA Grant 2006-01161, the USDA NIFA Hatch Program 1002302, and the US-Israel BARD Project (Grant IS-4829-15).

Author information

Authors and Affiliations

Authors

Contributions

HL, JD, PEM, and AD conceived and designed the experiments. HL, LW, M-CL, constructed genetic maps, HL, FN, YZ, and CS performed HD-FISH and analyzed results, and JD, HL, M-CL, PEM, and AD discussed the findings and interpreted the results. JD and HL wrote the first draft of the paper. All authors have read and approved the final draft.

Corresponding author

Correspondence to Jan Dvorak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Heslop-Harrison.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been revised to update the 9th author name from ChunPeng Song to Chun-Peng Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, L., Luo, MC. et al. Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor. Theor Appl Genet 132, 3265–3276 (2019). https://doi.org/10.1007/s00122-019-03423-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03423-z

Navigation