Skip to main content
Log in

A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A reproducible Agrobacterium tumefaciens-mediated genetic transformation method that delivers fertile and morphologically normal transgenic plants was developed for cultivated tepary bean (Phaseolus acutifolius L. Gray). Factors contributing to higher transformation efficiencies include (1) a low initial concentration of bacteria coupled with a longer cocultivation period with callus, (2) an initial selection of callus on a medium containing low levels of the selectable agent, (3) omission of the selectable agent from the medium during callus differentiation to shoots and (4) the efficient conversion of transgenic shoots into fertile plants. All plants regenerated with this procedure (T0) were stably transformed, and the introduced foreign genes were inherited in a Mendelian fashion in most of the 33 independent transformants. Integration, stable transmission and high expression levels of the transgenes were observed in the T1 and/or T3 progenies of the transgenic lines. The binary transformation vectors contained the β-glucuronidase reporter gene, the neomycin phosphotransferase II selectable marker gene and either an arcelin 1 or an arcelin 5 gene. Arcelins are seed proteins that are very abundant in some wild P. vulgaris L. genotypes showing resistance to the storage insect Zabrotes subfasciatus (Boheman) (Coleoptera, Bruchidae). Transgenic beans from two different cultivated P. acutifolius genotypes with high arcelin levels were infested with Z. subfasciatus, but they were only marginally less susceptible to infestation than the non-transgenic P. acutifolius. Hence, the arcelin genes tested here are not major determinants of resistance against Z. subfasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony JL, Vonder Haar RA, Hall TC (1991) Nucleotide sequence of a genomic clone encoding arcelin, a lectin-like seed protein from Phaseolus vulgaris. Plant Physiol 97:839–840

    Article  PubMed  CAS  Google Scholar 

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  PubMed  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Cardona C, Posso CE, Kornegay J, Valor J, Serrano M (1989) Antibiosis effects of wild dry bean accessions on the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). J Econ Entomol 82:310–315

    Google Scholar 

  • Cardona C, Kornegay J, Posso CE, Morales F, Ramirez H (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206

    Article  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crops Res 53:83–97

    Article  Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Article  CAS  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  PubMed  Google Scholar 

  • Dillen W, De Clercq J, Goossens A, Van Montagu M, Angenon G (1997) Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray. Theor Appl Genet 94:151–158

    Article  CAS  Google Scholar 

  • Franklin CI, Trieu TN, Cassidy BG, Dixon RA, Nelson RS (1993) Genetic transformation of green bean callus via Agrobacterium mediated DNA transfer. Plant Cell Rep 12:74–79

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Dillen W, De Clercq J, Van Montagu M, Angenon G (1999) The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants. Plant Physiol 120:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Quintero C, Dillen W, De Rycke R, Valor JF, De Clercq J, Van Montagu M, Cardona C, Angenon G (2000) Analysis of bruchid resistance in the wild common bean accession G02771: no evidence for insecticidal activity of arcelin 5. J Exp Bot 51:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Hartweck LM, Vogelzang RD, Osborn TC (1991) Characterization and comparison of arcelin seed protein variants from common bean. Plant Physiol 97:204–211

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kornegay J, Cardona C, Posso CE (1993) Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33:589–594

    Article  CAS  Google Scholar 

  • Kumar AS, Gamborg OL, Nabors MW (1988) Regeneration from long-term cell suspension cultures of tepary bean (Phaseolus acutifolius). Plant Cell Rep 7:322–325

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagl W, Ignacimuthu S, Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol 150:625–644

    Article  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12:165–169

    Article  PubMed  CAS  Google Scholar 

  • Sales MP, Gerhardt IR, Grossi-de-Sá MF, Xavier-Filho J (2000) Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiol 124:512–522

    Article  Google Scholar 

  • SAS Institute (1985) SAS user’s guide: statistics version 5. SAS Institute, Cary, N.C.

    Google Scholar 

  • Schoonhoven AV, Cardona C (1982) Low levels of resistance to the Mexican bean weevil in dry beans. J Econ Entomol 75:567–569

    Google Scholar 

  • Scott ME, Michaels TE (1992) Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. Hortic Sci 27:348–350

    Google Scholar 

  • Singh SP (1999) Integrated genetic improvement. In: Singh SP (ed) Common bean improvement in the twenty-first century. Developments in plant breeding, vol 7. Kluwer, Dordrecht, pp 133–165

    Chapter  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Zambre MA, De Clercq J, Vranová E, Van Montagu M, Angenon G, Dillen W (1998) Plant regeneration from embryo-derived callus in Phaseolus vulgaris L (common bean) and P. acutifolius A. Gray (tepary bean). Plant Cell Rep 17:626–630

    Article  CAS  Google Scholar 

  • Zambre M, Geerts P, Maquet A, Van Montagu M, Dillen W, Angenon G (2001) Regeneration of fertile plants from callus in Phaseolus polyanthus Greenman (year bean). Ann Bot 88:371–377

    Article  CAS  Google Scholar 

  • Zambre M, Chowdhury B, Kuo Y-H, Van Montagu M, Angenon G, Lambein F (2002) Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163:1107–1112

    Article  CAS  Google Scholar 

  • Zhang Z, Coyne DP, Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J Am Soc Hortic Sci 122:300–305

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Martine De Cock for help in preparing the manuscript and Rebecca Verbanck and Karel Spruyt for the artwork. This work was supported by a grant from the Belgian Directorate General for Development and Co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Van Montagu.

Additional information

Communicated by C. Möllers

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambre, M., Goossens, A., Cardona, C. et al. A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil. Theor Appl Genet 110, 914–924 (2005). https://doi.org/10.1007/s00122-004-1910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1910-7

Keywords

Navigation